{"title":"基于深度长期递归卷积网络的自适应肉毒杆菌优化增强心脏病风险预测。","authors":"R Vijay Sai, B G Geetha","doi":"10.1177/09287329251333750","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart disease is the leading cause of death worldwide and predicting it is a complex task requiring extensive expertise. Recent advancements in IoT-based illness prediction have enabled accurate classification using sensor data.</p><p><strong>Objective: </strong>This research introduces a methodology for heart disease classification, integrating advanced data preprocessing, feature selection, and deep learning (DL) techniques tailored for IoT sensor data.</p><p><strong>Methods: </strong>The work employs Clustering-based Data Imputation and Normalization (CDIN) and Robust Mahalanobis Distance-based Outlier Detection (RMDBOD) for preprocessing, ensuring data quality. Feature selection is achieved using the Improved Binary Quantum-based Avian Navigation Optimization (IBQANO) algorithm, and classification is performed with the Deep Long-Term Recurrent Convolutional Network (DLRCN), fine-tuned using the Adaptive Botox Optimization Algorithm (ABOA).</p><p><strong>Results: </strong>The proposed models tested on the Hungarian, UCI, and Cleveland heart disease datasets demonstrate significant improvements over existing methods. Specifically, the Cleveland dataset model achieves an accuracy of 99.72%, while the UCI dataset model achieves an accuracy of 99.41%.</p><p><strong>Conclusion: </strong>This methodology represents a significant advancement in remote healthcare monitoring, crucial for managing conditions like high blood pressure, especially in older adults, offering a reliable and accurate solution for heart disease prediction.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"2484-2512"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced heart disease risk prediction using adaptive botox optimization based deep long-term recurrent convolutional network.\",\"authors\":\"R Vijay Sai, B G Geetha\",\"doi\":\"10.1177/09287329251333750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart disease is the leading cause of death worldwide and predicting it is a complex task requiring extensive expertise. Recent advancements in IoT-based illness prediction have enabled accurate classification using sensor data.</p><p><strong>Objective: </strong>This research introduces a methodology for heart disease classification, integrating advanced data preprocessing, feature selection, and deep learning (DL) techniques tailored for IoT sensor data.</p><p><strong>Methods: </strong>The work employs Clustering-based Data Imputation and Normalization (CDIN) and Robust Mahalanobis Distance-based Outlier Detection (RMDBOD) for preprocessing, ensuring data quality. Feature selection is achieved using the Improved Binary Quantum-based Avian Navigation Optimization (IBQANO) algorithm, and classification is performed with the Deep Long-Term Recurrent Convolutional Network (DLRCN), fine-tuned using the Adaptive Botox Optimization Algorithm (ABOA).</p><p><strong>Results: </strong>The proposed models tested on the Hungarian, UCI, and Cleveland heart disease datasets demonstrate significant improvements over existing methods. Specifically, the Cleveland dataset model achieves an accuracy of 99.72%, while the UCI dataset model achieves an accuracy of 99.41%.</p><p><strong>Conclusion: </strong>This methodology represents a significant advancement in remote healthcare monitoring, crucial for managing conditions like high blood pressure, especially in older adults, offering a reliable and accurate solution for heart disease prediction.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"2484-2512\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09287329251333750\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251333750","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhanced heart disease risk prediction using adaptive botox optimization based deep long-term recurrent convolutional network.
Background: Heart disease is the leading cause of death worldwide and predicting it is a complex task requiring extensive expertise. Recent advancements in IoT-based illness prediction have enabled accurate classification using sensor data.
Objective: This research introduces a methodology for heart disease classification, integrating advanced data preprocessing, feature selection, and deep learning (DL) techniques tailored for IoT sensor data.
Methods: The work employs Clustering-based Data Imputation and Normalization (CDIN) and Robust Mahalanobis Distance-based Outlier Detection (RMDBOD) for preprocessing, ensuring data quality. Feature selection is achieved using the Improved Binary Quantum-based Avian Navigation Optimization (IBQANO) algorithm, and classification is performed with the Deep Long-Term Recurrent Convolutional Network (DLRCN), fine-tuned using the Adaptive Botox Optimization Algorithm (ABOA).
Results: The proposed models tested on the Hungarian, UCI, and Cleveland heart disease datasets demonstrate significant improvements over existing methods. Specifically, the Cleveland dataset model achieves an accuracy of 99.72%, while the UCI dataset model achieves an accuracy of 99.41%.
Conclusion: This methodology represents a significant advancement in remote healthcare monitoring, crucial for managing conditions like high blood pressure, especially in older adults, offering a reliable and accurate solution for heart disease prediction.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).