Erez Freud, Zoha Ahmad, Eitan Shelef, Bat Sheva Hadad
{"title":"基于抓取运动学的自闭症有效分类。","authors":"Erez Freud, Zoha Ahmad, Eitan Shelef, Bat Sheva Hadad","doi":"10.1002/aur.70049","DOIUrl":null,"url":null,"abstract":"<p>Autism is a complex neurodevelopmental condition, where motor abnormalities play a central role alongside social and communication difficulties. These motor symptoms often manifest in early childhood, making them critical targets for early diagnosis and intervention. This study aimed to assess whether kinematic features from a naturalistic grasping task could accurately distinguish autistic participants from non-autistic ones. We analyzed grasping movements of autistic and non-autistic young adults, tracking two markers placed on the thumb and index finger. Using a subject-wise cross-validated classifiers, we achieved accuracy scores of above 84%. Receiver operating characteristic analysis revealed strong classification performance with area under the curve values of above 0.95 at the subject-wise analysis and above 0.85 at the trial-wise analysis. These findings indicate strong reliability in accurately distinguishing autistic participants from non-autistic ones. These findings suggest that subtle motor control differences can be effectively captured, offering a promising approach for developing accessible and reliable diagnostic tools for autism.</p>","PeriodicalId":131,"journal":{"name":"Autism Research","volume":"18 6","pages":"1170-1181"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aur.70049","citationCount":"0","resultStr":"{\"title\":\"Effective Autism Classification Through Grasping Kinematics\",\"authors\":\"Erez Freud, Zoha Ahmad, Eitan Shelef, Bat Sheva Hadad\",\"doi\":\"10.1002/aur.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autism is a complex neurodevelopmental condition, where motor abnormalities play a central role alongside social and communication difficulties. These motor symptoms often manifest in early childhood, making them critical targets for early diagnosis and intervention. This study aimed to assess whether kinematic features from a naturalistic grasping task could accurately distinguish autistic participants from non-autistic ones. We analyzed grasping movements of autistic and non-autistic young adults, tracking two markers placed on the thumb and index finger. Using a subject-wise cross-validated classifiers, we achieved accuracy scores of above 84%. Receiver operating characteristic analysis revealed strong classification performance with area under the curve values of above 0.95 at the subject-wise analysis and above 0.85 at the trial-wise analysis. These findings indicate strong reliability in accurately distinguishing autistic participants from non-autistic ones. These findings suggest that subtle motor control differences can be effectively captured, offering a promising approach for developing accessible and reliable diagnostic tools for autism.</p>\",\"PeriodicalId\":131,\"journal\":{\"name\":\"Autism Research\",\"volume\":\"18 6\",\"pages\":\"1170-1181\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aur.70049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autism Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aur.70049\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autism Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aur.70049","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Effective Autism Classification Through Grasping Kinematics
Autism is a complex neurodevelopmental condition, where motor abnormalities play a central role alongside social and communication difficulties. These motor symptoms often manifest in early childhood, making them critical targets for early diagnosis and intervention. This study aimed to assess whether kinematic features from a naturalistic grasping task could accurately distinguish autistic participants from non-autistic ones. We analyzed grasping movements of autistic and non-autistic young adults, tracking two markers placed on the thumb and index finger. Using a subject-wise cross-validated classifiers, we achieved accuracy scores of above 84%. Receiver operating characteristic analysis revealed strong classification performance with area under the curve values of above 0.95 at the subject-wise analysis and above 0.85 at the trial-wise analysis. These findings indicate strong reliability in accurately distinguishing autistic participants from non-autistic ones. These findings suggest that subtle motor control differences can be effectively captured, offering a promising approach for developing accessible and reliable diagnostic tools for autism.
期刊介绍:
AUTISM RESEARCH will cover the developmental disorders known as Pervasive Developmental Disorders (or autism spectrum disorders – ASDs). The Journal focuses on basic genetic, neurobiological and psychological mechanisms and how these influence developmental processes in ASDs.