了解铁/血红素代谢在天然硫分子抗脂多糖诱导炎症中的作用。

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-07-01 Epub Date: 2025-04-25 DOI:10.3892/mmr.2025.13542
Dong Young Kang, Se Won Bae, Kyoung-Jin Jang
{"title":"了解铁/血红素代谢在天然硫分子抗脂多糖诱导炎症中的作用。","authors":"Dong Young Kang, Se Won Bae, Kyoung-Jin Jang","doi":"10.3892/mmr.2025.13542","DOIUrl":null,"url":null,"abstract":"<p><p>Iron transport and heme synthesis are essential processes in human metabolism, and any dysregulation in these mechanisms, such as inflammation, can have deleterious effects. Lipopolysaccharide (LPS)‑induced inflammatory responses can result in a number of adverse effects, including cancer. Natural mineral sulfur, methylsulfonylmethane (MSM) and nontoxic sulfur (NTS) suppress inflammatory responses. The present study hypothesized that MSM and NTS may inhibit LPS‑induced inflammatory responses in THP‑1 human monocytes. Reverse transcription‑quantitative PCR and western blotting assays were performed to analyze the molecular signaling pathways associated with sulfur‑treated and untreated cells. A comet assay was used to evaluate DNA damage, flow cytometry was performed to analyze cell surface receptors and chromatin immunoprecipitation was used to examine molecular interactions. Notably, LPS‑induced inflammation increased iron/heme metabolism, whereas MSM and NTS inhibited this effect. Furthermore, LPS treatment activated the Toll‑like receptor 4/NF‑κB signaling axis, which was downregulated by NTS and MSM. These sulfur compounds also suppressed the nuclear accumulation of LPS‑induced NF‑κB, which could induce the production of proinflammatory cytokines, such as TNF‑α, IL‑1β and IL‑6. Finally, MSM and NTS inhibited LPS‑induced reactive oxygen species generation and DNA damage in THP‑1 monocytic leukemia cells. These results suggested that natural sulfur molecules may be considered promising candidates for anti‑inflammation studies.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"32 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding the role of iron/heme metabolism in the anti‑inflammatory effects of natural sulfur molecules against lipopolysaccharide‑induced inflammation.\",\"authors\":\"Dong Young Kang, Se Won Bae, Kyoung-Jin Jang\",\"doi\":\"10.3892/mmr.2025.13542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron transport and heme synthesis are essential processes in human metabolism, and any dysregulation in these mechanisms, such as inflammation, can have deleterious effects. Lipopolysaccharide (LPS)‑induced inflammatory responses can result in a number of adverse effects, including cancer. Natural mineral sulfur, methylsulfonylmethane (MSM) and nontoxic sulfur (NTS) suppress inflammatory responses. The present study hypothesized that MSM and NTS may inhibit LPS‑induced inflammatory responses in THP‑1 human monocytes. Reverse transcription‑quantitative PCR and western blotting assays were performed to analyze the molecular signaling pathways associated with sulfur‑treated and untreated cells. A comet assay was used to evaluate DNA damage, flow cytometry was performed to analyze cell surface receptors and chromatin immunoprecipitation was used to examine molecular interactions. Notably, LPS‑induced inflammation increased iron/heme metabolism, whereas MSM and NTS inhibited this effect. Furthermore, LPS treatment activated the Toll‑like receptor 4/NF‑κB signaling axis, which was downregulated by NTS and MSM. These sulfur compounds also suppressed the nuclear accumulation of LPS‑induced NF‑κB, which could induce the production of proinflammatory cytokines, such as TNF‑α, IL‑1β and IL‑6. Finally, MSM and NTS inhibited LPS‑induced reactive oxygen species generation and DNA damage in THP‑1 monocytic leukemia cells. These results suggested that natural sulfur molecules may be considered promising candidates for anti‑inflammation studies.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12046942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2025.13542\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

铁转运和血红素合成是人体代谢的重要过程,这些机制的任何失调,如炎症,都可能产生有害影响。脂多糖(LPS)诱导的炎症反应可导致许多不良反应,包括癌症。天然矿物硫,甲基磺酰甲烷(MSM)和无毒硫(NTS)抑制炎症反应。本研究假设MSM和NTS可能抑制LPS诱导的THP - 1人单核细胞的炎症反应。采用反转录定量PCR和western blotting方法分析硫处理和未处理细胞相关的分子信号通路。用彗星法评估DNA损伤,用流式细胞术分析细胞表面受体,用染色质免疫沉淀法检测分子相互作用。值得注意的是,LPS诱导的炎症增加了铁/血红素代谢,而MSM和NTS抑制了这一作用。此外,LPS处理激活了Toll样受体4/NF - κB信号轴,NTS和MSM下调了该信号轴。这些含硫化合物还能抑制LPS诱导的NF - κB的核积累,从而诱导TNF - α、IL - 1β和IL - 6等促炎细胞因子的产生。最后,MSM和NTS抑制LPS诱导的THP - 1单核白血病细胞的活性氧生成和DNA损伤。这些结果表明,天然硫分子可能被认为是抗炎症研究的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the role of iron/heme metabolism in the anti‑inflammatory effects of natural sulfur molecules against lipopolysaccharide‑induced inflammation.

Iron transport and heme synthesis are essential processes in human metabolism, and any dysregulation in these mechanisms, such as inflammation, can have deleterious effects. Lipopolysaccharide (LPS)‑induced inflammatory responses can result in a number of adverse effects, including cancer. Natural mineral sulfur, methylsulfonylmethane (MSM) and nontoxic sulfur (NTS) suppress inflammatory responses. The present study hypothesized that MSM and NTS may inhibit LPS‑induced inflammatory responses in THP‑1 human monocytes. Reverse transcription‑quantitative PCR and western blotting assays were performed to analyze the molecular signaling pathways associated with sulfur‑treated and untreated cells. A comet assay was used to evaluate DNA damage, flow cytometry was performed to analyze cell surface receptors and chromatin immunoprecipitation was used to examine molecular interactions. Notably, LPS‑induced inflammation increased iron/heme metabolism, whereas MSM and NTS inhibited this effect. Furthermore, LPS treatment activated the Toll‑like receptor 4/NF‑κB signaling axis, which was downregulated by NTS and MSM. These sulfur compounds also suppressed the nuclear accumulation of LPS‑induced NF‑κB, which could induce the production of proinflammatory cytokines, such as TNF‑α, IL‑1β and IL‑6. Finally, MSM and NTS inhibited LPS‑induced reactive oxygen species generation and DNA damage in THP‑1 monocytic leukemia cells. These results suggested that natural sulfur molecules may be considered promising candidates for anti‑inflammation studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信