[经导管主动脉瓣置换术后结构性瓣膜恶化:最新研究进展]。

Q2 Medicine
Mengyun Yan, Zhengang Zhao, Mao Chen
{"title":"[经导管主动脉瓣置换术后结构性瓣膜恶化:最新研究进展]。","authors":"Mengyun Yan, Zhengang Zhao, Mao Chen","doi":"10.3724/zdxbyxb-2024-0470","DOIUrl":null,"url":null,"abstract":"<p><p>Structural valve deterioration (SVD) refers to intrinsic and irreversible pathological changes in the components of prosthetic heart valves, manifesting as fibrosis, calcification, wear and tear, loosening, as well as strut fracture or deformation of the valve framework. These changes ultimately lead to valve stenosis and/or regurgitation.The mechanisms may be related to mechanical stress, immune response and abnormal calcium-phosphorus metabolism. Studies have shown that risk factors for SVD include patient factors (such as age, underlying cardiovascular disease and comorbidities), valve factors (such as material properties, processing techniques, and valve type), and surgical factors (such as valve injury, suboptimal stent expansion, and irregular stent release morphology). Clinical imaging assessment of SVD demonstrates complementary advantages among echocardiography, multi-detector spiral CT and cardiac magnetic resonance imaging, with distinct diagnostic objectives. The primary management strategies for SVD after trans-catheter aortic valve replacement (TAVR) include drug therapy, redo-TAVR, surgical aortic valve replacement (SAVR) and the novel SURPLUS technique. Among them, redo-TAVR has become a common method because of its minimally invasive nature, but it is still necessary to further clarify the patient indications and optimize the surgical strategy. SAVR is reserved for young, low-risk patients; SURPLUS combines the advantages of SAVR and TAVR, making it suitable for cases where redo-TAVR is unfeasible or contraindicated, while the risk of SAVR is excessively high. This article reviews the latest progress of SVD following TAVR treatment to provide reference for research into the durability of bioprosthetic valve and clinical intervention of SVD.</p>","PeriodicalId":24007,"journal":{"name":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","volume":"54 2","pages":"183-190"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062941/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Structural valve deterioration after transcatheter aortic valve replacement: a research update].\",\"authors\":\"Mengyun Yan, Zhengang Zhao, Mao Chen\",\"doi\":\"10.3724/zdxbyxb-2024-0470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural valve deterioration (SVD) refers to intrinsic and irreversible pathological changes in the components of prosthetic heart valves, manifesting as fibrosis, calcification, wear and tear, loosening, as well as strut fracture or deformation of the valve framework. These changes ultimately lead to valve stenosis and/or regurgitation.The mechanisms may be related to mechanical stress, immune response and abnormal calcium-phosphorus metabolism. Studies have shown that risk factors for SVD include patient factors (such as age, underlying cardiovascular disease and comorbidities), valve factors (such as material properties, processing techniques, and valve type), and surgical factors (such as valve injury, suboptimal stent expansion, and irregular stent release morphology). Clinical imaging assessment of SVD demonstrates complementary advantages among echocardiography, multi-detector spiral CT and cardiac magnetic resonance imaging, with distinct diagnostic objectives. The primary management strategies for SVD after trans-catheter aortic valve replacement (TAVR) include drug therapy, redo-TAVR, surgical aortic valve replacement (SAVR) and the novel SURPLUS technique. Among them, redo-TAVR has become a common method because of its minimally invasive nature, but it is still necessary to further clarify the patient indications and optimize the surgical strategy. SAVR is reserved for young, low-risk patients; SURPLUS combines the advantages of SAVR and TAVR, making it suitable for cases where redo-TAVR is unfeasible or contraindicated, while the risk of SAVR is excessively high. This article reviews the latest progress of SVD following TAVR treatment to provide reference for research into the durability of bioprosthetic valve and clinical intervention of SVD.</p>\",\"PeriodicalId\":24007,\"journal\":{\"name\":\"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences\",\"volume\":\"54 2\",\"pages\":\"183-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/zdxbyxb-2024-0470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/zdxbyxb-2024-0470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

瓣膜结构恶化(Structural valve degradation, SVD)是指人工心脏瓣膜组成部分内在的、不可逆的病理改变,表现为纤维化、钙化、磨损、松动以及瓣膜框架的支撑断裂或变形。这些变化最终导致瓣膜狭窄和/或反流。其机制可能与机械应激、免疫应答和钙磷代谢异常有关。研究表明,SVD的危险因素包括患者因素(如年龄、潜在心血管疾病和合并症)、瓣膜因素(如材料特性、加工技术、瓣膜类型)和手术因素(如瓣膜损伤、支架扩张不理想、支架释放形态不规则)。SVD的临床影像学评估显示超声心动图、多探头螺旋CT和心脏磁共振成像优势互补,诊断目的明确。经导管主动脉瓣置换术(TAVR)后SVD的主要治疗策略包括药物治疗、重新进行TAVR、外科主动脉瓣置换术(SAVR)和新型的SURPLUS技术。其中,redo-TAVR因其微创性已成为常用方法,但仍需进一步明确患者适应证,优化手术策略。SAVR只适用于年轻、低风险的患者;盈余结合了SAVR和TAVR的优点,适用于无法进行再TAVR或有禁忌症,而SAVR风险过高的病例。本文就TAVR治疗后SVD的最新进展进行综述,为研究生物人工瓣膜的耐久性及SVD的临床干预提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Structural valve deterioration after transcatheter aortic valve replacement: a research update].

Structural valve deterioration (SVD) refers to intrinsic and irreversible pathological changes in the components of prosthetic heart valves, manifesting as fibrosis, calcification, wear and tear, loosening, as well as strut fracture or deformation of the valve framework. These changes ultimately lead to valve stenosis and/or regurgitation.The mechanisms may be related to mechanical stress, immune response and abnormal calcium-phosphorus metabolism. Studies have shown that risk factors for SVD include patient factors (such as age, underlying cardiovascular disease and comorbidities), valve factors (such as material properties, processing techniques, and valve type), and surgical factors (such as valve injury, suboptimal stent expansion, and irregular stent release morphology). Clinical imaging assessment of SVD demonstrates complementary advantages among echocardiography, multi-detector spiral CT and cardiac magnetic resonance imaging, with distinct diagnostic objectives. The primary management strategies for SVD after trans-catheter aortic valve replacement (TAVR) include drug therapy, redo-TAVR, surgical aortic valve replacement (SAVR) and the novel SURPLUS technique. Among them, redo-TAVR has become a common method because of its minimally invasive nature, but it is still necessary to further clarify the patient indications and optimize the surgical strategy. SAVR is reserved for young, low-risk patients; SURPLUS combines the advantages of SAVR and TAVR, making it suitable for cases where redo-TAVR is unfeasible or contraindicated, while the risk of SAVR is excessively high. This article reviews the latest progress of SVD following TAVR treatment to provide reference for research into the durability of bioprosthetic valve and clinical intervention of SVD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信