Lucia Suarez Menendez, David J. Owen, Nathan R. Zaccai, Armando Maestro and Alberto Alvarez-Fernandez
{"title":"工程曲率:用于制造弯曲脂质膜的嵌段共聚物光刻及其对蛋白质-膜相互作用的影响。","authors":"Lucia Suarez Menendez, David J. Owen, Nathan R. Zaccai, Armando Maestro and Alberto Alvarez-Fernandez","doi":"10.1039/D5TB00689A","DOIUrl":null,"url":null,"abstract":"<p >Studying biological membranes is essential for understanding key cellular processes such as signal transduction and ion transport, which have significant implications for developing advanced therapies for diseases like cancer and cardiovascular disorders. However, the structural complexity of these membranes presents challenges for detailed analysis, necessitating advanced techniques that are often incompatible with in-cell studies. As a result, current research has shifted toward fabricating artificial membranes that closely mimic their natural counterparts. A critical limitation remains in replicating the natural curvature of biological membranes that restricts the effectiveness of existing flat <em>in vitro</em> models. In response, this study introduces block copolymer (BCP) lithography as a method for creating nanostructured surfaces that induce controllable local membrane curvature. Lipid bilayer formation was confirmed using atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Subsequent investigations into clathrin assembly lymphoid myeloid-leukemia (CALM) protein interactions with curved membranes revealed a preferential binding to curved surfaces, characterized by a more homogeneous protein distribution compared to flat membranes. These findings enhance our understanding of membrane–protein interactions and cellular processes, opening up potential applications in drug delivery and biosensing.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 20","pages":" 5769-5775"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d5tb00689a?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineering curvature: block copolymer lithography for the fabrication of curved lipid membranes and their impact on protein–membrane interactions†\",\"authors\":\"Lucia Suarez Menendez, David J. Owen, Nathan R. Zaccai, Armando Maestro and Alberto Alvarez-Fernandez\",\"doi\":\"10.1039/D5TB00689A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Studying biological membranes is essential for understanding key cellular processes such as signal transduction and ion transport, which have significant implications for developing advanced therapies for diseases like cancer and cardiovascular disorders. However, the structural complexity of these membranes presents challenges for detailed analysis, necessitating advanced techniques that are often incompatible with in-cell studies. As a result, current research has shifted toward fabricating artificial membranes that closely mimic their natural counterparts. A critical limitation remains in replicating the natural curvature of biological membranes that restricts the effectiveness of existing flat <em>in vitro</em> models. In response, this study introduces block copolymer (BCP) lithography as a method for creating nanostructured surfaces that induce controllable local membrane curvature. Lipid bilayer formation was confirmed using atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Subsequent investigations into clathrin assembly lymphoid myeloid-leukemia (CALM) protein interactions with curved membranes revealed a preferential binding to curved surfaces, characterized by a more homogeneous protein distribution compared to flat membranes. These findings enhance our understanding of membrane–protein interactions and cellular processes, opening up potential applications in drug delivery and biosensing.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 20\",\"pages\":\" 5769-5775\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tb/d5tb00689a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00689a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00689a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Engineering curvature: block copolymer lithography for the fabrication of curved lipid membranes and their impact on protein–membrane interactions†
Studying biological membranes is essential for understanding key cellular processes such as signal transduction and ion transport, which have significant implications for developing advanced therapies for diseases like cancer and cardiovascular disorders. However, the structural complexity of these membranes presents challenges for detailed analysis, necessitating advanced techniques that are often incompatible with in-cell studies. As a result, current research has shifted toward fabricating artificial membranes that closely mimic their natural counterparts. A critical limitation remains in replicating the natural curvature of biological membranes that restricts the effectiveness of existing flat in vitro models. In response, this study introduces block copolymer (BCP) lithography as a method for creating nanostructured surfaces that induce controllable local membrane curvature. Lipid bilayer formation was confirmed using atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D). Subsequent investigations into clathrin assembly lymphoid myeloid-leukemia (CALM) protein interactions with curved membranes revealed a preferential binding to curved surfaces, characterized by a more homogeneous protein distribution compared to flat membranes. These findings enhance our understanding of membrane–protein interactions and cellular processes, opening up potential applications in drug delivery and biosensing.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices