Sai Zhang, Fereshteh Jahanbani, Varuna Chander, Martin Kjellberg, Menghui Liu, Katherine A Glass, David S Iu, Faraz Ahmed, Han Li, Rajan Douglas Maynard, Tristan Chou, Johnathan Cooper-Knock, Martin Jinye Zhang, Durga Thota, Michael Zeineh, Jennifer K Grenier, Andrew Grimson, Maureen R Hanson, Michael P Snyder
{"title":"通过深度学习驱动的基因组分析剖析肌痛性脑脊髓炎/慢性疲劳综合征的遗传复杂性。","authors":"Sai Zhang, Fereshteh Jahanbani, Varuna Chander, Martin Kjellberg, Menghui Liu, Katherine A Glass, David S Iu, Faraz Ahmed, Han Li, Rajan Douglas Maynard, Tristan Chou, Johnathan Cooper-Knock, Martin Jinye Zhang, Durga Thota, Michael Zeineh, Jennifer K Grenier, Andrew Grimson, Maureen R Hanson, Michael P Snyder","doi":"10.1101/2025.04.15.25325899","DOIUrl":null,"url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments. In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations. Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19. Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047926/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dissecting the genetic complexity of myalgic encephalomyelitis/chronic fatigue syndrome via deep learning-powered genome analysis.\",\"authors\":\"Sai Zhang, Fereshteh Jahanbani, Varuna Chander, Martin Kjellberg, Menghui Liu, Katherine A Glass, David S Iu, Faraz Ahmed, Han Li, Rajan Douglas Maynard, Tristan Chou, Johnathan Cooper-Knock, Martin Jinye Zhang, Durga Thota, Michael Zeineh, Jennifer K Grenier, Andrew Grimson, Maureen R Hanson, Michael P Snyder\",\"doi\":\"10.1101/2025.04.15.25325899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments. In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations. Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19. Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2025.04.15.25325899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.15.25325899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissecting the genetic complexity of myalgic encephalomyelitis/chronic fatigue syndrome via deep learning-powered genome analysis.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments. In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations. Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19. Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.