Long Chen, Qiao Hu, Shijie Li, Hao Zhang, Liangjie Sun, Hongbo Wei, Tianlong Wang
{"title":"具有厚度效应的水下仿生波动鳍:水动力性能和最佳厚度变化率分析。","authors":"Long Chen, Qiao Hu, Shijie Li, Hao Zhang, Liangjie Sun, Hongbo Wei, Tianlong Wang","doi":"10.1088/1748-3190/add3e4","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the urgent issues faced by current bionic undulating fin robot propulsion mechanisms, such as low working efficiency, insufficient swimming speed, ignoring thickness parameters, and the need for further improvement in biomimetic degree, this article extends the theory of surface elements to tetrahedral elements using d'Alembert's principle, making it better suited for the research of undulating fins with thickness. By employing computational fluid dynamics simulations and comparative studies, the article examines the influence of motion parameters on the hydrodynamic performance of undulating fins that have thickness. The results are more valuable for engineering applications. Further research on the dimensional parameters of undulating fins is carried out, proposing that the design of undulating fins should follow the priority order of \"width first, then length, and finally thickness.\" Based on this, a bionic fin with variable thickness is designed, and the optimal range of comprehensive hydrodynamic performance for the variable thickness fin is obtained.
.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater bionic undulating fins incorporating thickness effects:Hydrodynamic performance and optimal thickness variation rate analysis.\",\"authors\":\"Long Chen, Qiao Hu, Shijie Li, Hao Zhang, Liangjie Sun, Hongbo Wei, Tianlong Wang\",\"doi\":\"10.1088/1748-3190/add3e4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the urgent issues faced by current bionic undulating fin robot propulsion mechanisms, such as low working efficiency, insufficient swimming speed, ignoring thickness parameters, and the need for further improvement in biomimetic degree, this article extends the theory of surface elements to tetrahedral elements using d'Alembert's principle, making it better suited for the research of undulating fins with thickness. By employing computational fluid dynamics simulations and comparative studies, the article examines the influence of motion parameters on the hydrodynamic performance of undulating fins that have thickness. The results are more valuable for engineering applications. Further research on the dimensional parameters of undulating fins is carried out, proposing that the design of undulating fins should follow the priority order of \\\"width first, then length, and finally thickness.\\\" Based on this, a bionic fin with variable thickness is designed, and the optimal range of comprehensive hydrodynamic performance for the variable thickness fin is obtained.
.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/add3e4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/add3e4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Underwater bionic undulating fins incorporating thickness effects:Hydrodynamic performance and optimal thickness variation rate analysis.
In response to the urgent issues faced by current bionic undulating fin robot propulsion mechanisms, such as low working efficiency, insufficient swimming speed, ignoring thickness parameters, and the need for further improvement in biomimetic degree, this article extends the theory of surface elements to tetrahedral elements using d'Alembert's principle, making it better suited for the research of undulating fins with thickness. By employing computational fluid dynamics simulations and comparative studies, the article examines the influence of motion parameters on the hydrodynamic performance of undulating fins that have thickness. The results are more valuable for engineering applications. Further research on the dimensional parameters of undulating fins is carried out, proposing that the design of undulating fins should follow the priority order of "width first, then length, and finally thickness." Based on this, a bionic fin with variable thickness is designed, and the optimal range of comprehensive hydrodynamic performance for the variable thickness fin is obtained.
.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.