深度学习辅助的单粒子跟踪分析,用于扩散和函数之间的自动关联。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-05-08 DOI:10.1038/s41592-025-02665-8
Jacob Kæstel-Hansen, Marilina de Sautu, Anand Saminathan, Gustavo Scanavachi, Ricardo F Bango Da Cunha Correia, Annette Juma Nielsen, Sara Vogt Bleshøy, Konstantinos Tsolakidis, Wouter Boomsma, Tomas Kirchhausen, Nikos S Hatzakis
{"title":"深度学习辅助的单粒子跟踪分析,用于扩散和函数之间的自动关联。","authors":"Jacob Kæstel-Hansen, Marilina de Sautu, Anand Saminathan, Gustavo Scanavachi, Ricardo F Bango Da Cunha Correia, Annette Juma Nielsen, Sara Vogt Bleshøy, Konstantinos Tsolakidis, Wouter Boomsma, Tomas Kirchhausen, Nikos S Hatzakis","doi":"10.1038/s41592-025-02665-8","DOIUrl":null,"url":null,"abstract":"<p><p>Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"1091-1100"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function.\",\"authors\":\"Jacob Kæstel-Hansen, Marilina de Sautu, Anand Saminathan, Gustavo Scanavachi, Ricardo F Bango Da Cunha Correia, Annette Juma Nielsen, Sara Vogt Bleshøy, Konstantinos Tsolakidis, Wouter Boomsma, Tomas Kirchhausen, Nikos S Hatzakis\",\"doi\":\"10.1038/s41592-025-02665-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"1091-1100\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02665-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02665-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生命系统中的亚细胞扩散反映了细胞过程和相互作用。光学显微镜的最新进展使我们能够以前所未有的精度跟踪单个物体的纳米级扩散。然而,从亚细胞环境中分子和细胞器的扩散中不可知和自动提取功能信息是一项劳动密集型的工作,并提出了重大挑战。在这里,我们介绍了DeepSPT,一个集成在分析软件中的深度学习框架,以一种快速有效的方式解释物体的扩散二维或三维时间行为。为了证明其多功能性,我们将DeepSPT应用于病毒感染早期事件的自动映射,识别内体细胞器、网格蛋白包被的凹坑和囊泡等,F1得分分别为81%、82%和95%,并且在几秒钟内完成,而不是几周。DeepSPT仅从扩散中有效提取生物信息的事实表明,除了结构外,运动还在分子和亚细胞水平上编码功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-assisted analysis of single-particle tracking for automated correlation between diffusion and function.

Subcellular diffusion in living systems reflects cellular processes and interactions. Recent advances in optical microscopy allow the tracking of this nanoscale diffusion of individual objects with unprecedented precision. However, the agnostic and automated extraction of functional information from the diffusion of molecules and organelles within the subcellular environment is labor intensive and poses a significant challenge. Here we introduce DeepSPT, a deep learning framework integrated in an analysis software, to interpret the diffusional two- or three-dimensional temporal behavior of objects in a rapid and efficient manner, agnostically. Demonstrating its versatility, we have applied DeepSPT to automated mapping of the early events of viral infections, identifying endosomal organelles, clathrin-coated pits and vesicles among others with F1 scores of 81%, 82% and 95%, respectively, and within seconds instead of weeks. The fact that DeepSPT effectively extracts biological information from diffusion alone illustrates that besides structure, motion encodes function at the molecular and subcellular level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信