一种基于中心引导和交替优化的低剂量CT图像恢复方法。

Q3 Medicine
Xiaoyu Zhang, Hao Wang, Dong Zeng, Zhaoying Bian
{"title":"一种基于中心引导和交替优化的低剂量CT图像恢复方法。","authors":"Xiaoyu Zhang, Hao Wang, Dong Zeng, Zhaoying Bian","doi":"10.12122/j.issn.1673-4254.2025.04.20","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP).</p><p><strong>Methods: </strong>The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions.</p><p><strong>Results: </strong>In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions.</p><p><strong>Conclusions: </strong>FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.</p>","PeriodicalId":18962,"journal":{"name":"南方医科大学学报杂志","volume":"45 4","pages":"844-852"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037291/pdf/","citationCount":"0","resultStr":"{\"title\":\"[A low-dose CT image restoration method based on central guidance and alternating optimization].\",\"authors\":\"Xiaoyu Zhang, Hao Wang, Dong Zeng, Zhaoying Bian\",\"doi\":\"10.12122/j.issn.1673-4254.2025.04.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP).</p><p><strong>Methods: </strong>The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions.</p><p><strong>Results: </strong>In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions.</p><p><strong>Conclusions: </strong>FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.</p>\",\"PeriodicalId\":18962,\"journal\":{\"name\":\"南方医科大学学报杂志\",\"volume\":\"45 4\",\"pages\":\"844-852\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"南方医科大学学报杂志\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12122/j.issn.1673-4254.2025.04.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"南方医科大学学报杂志","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12122/j.issn.1673-4254.2025.04.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:提出一种基于中心引导交替优化(FedGP)的低剂量CT图像恢复方法。方法:FedGP框架通过采用一种没有固定中央服务器的结构,使传统的联邦学习模型发生了革命性的变化,在这种结构中,每个机构轮流充当中央服务器。该方法采用机构调制的CT图像恢复网络作为客户端局部训练的核心。通过中央引导和交替优化的联合学习方法,中央服务器利用本地标记数据指导客户端网络训练,以增强CT成像模型跨多个机构的泛化能力。结果:在低剂量、稀疏视图CT图像恢复任务中,FedGP方法在视觉和定量评价上均具有显著优势,PSNR最高(40.25、38.84),SSIM最高(0.95、0.92),RMSE最低(2.39、2.56)。FedGP的消融研究表明,与无中心引导的FedGP(w/o GP)相比,FedGP方法能更好地适应不同机构数据的异质性,从而保证了模型在不同成像条件下的鲁棒性和泛化能力。结论:FedGP提供了一个更灵活的FL框架,解决了CT成像的异质性问题,并能很好地适应多机构数据的特点,提高了模型在不同成像几何构型下的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[A low-dose CT image restoration method based on central guidance and alternating optimization].

Objectives: We propose a low-dose CT image restoration method based on central guidance and alternating optimization (FedGP).

Methods: The FedGP framework revolutionizes the traditional federated learning model by adopting a structure without a fixed central server, where each institution alternatively serves as the central server. This method uses an institution-modulated CT image restoration network as the core of client-side local training. Through a federated learning approach of central guidance and alternating optimization, the central server leverages local labeled data to guide client-side network training to enhance the generalization capability of the CT imaging model across multiple institutions.

Results: In the low-dose and sparse-view CT image restoration tasks, the FedGP method showed significant advantages in both visual and quantitative evaluation and achieved the highest PSNR (40.25 and 38.84), the highest SSIM (0.95 and 0.92), and the lowest RMSE (2.39 and 2.56). Ablation study of FedGP demonstrated that compared with FedGP(w/o GP) without central guidance, the FedGP method better adapted to data heterogeneity across institutions, thus ensuring robustness and generalization capability of the model in different imaging conditions.

Conclusions: FedGP provides a more flexible FL framework to solve the problem of CT imaging heterogeneity and well adapts to multi-institutional data characteristics to improve generalization ability of the model under diverse imaging geometric configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
南方医科大学学报杂志
南方医科大学学报杂志 Medicine-Medicine (all)
CiteScore
1.50
自引率
0.00%
发文量
208
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信