{"title":"人慢性脊髓损伤细胞治疗指南。","authors":"Reyhaneh Abolghasemi, Esmat Davoudi-Monfared","doi":"10.1089/ten.tec.2025.0032","DOIUrl":null,"url":null,"abstract":"<p><p>Based on various research, different cells are effective for improving the symptoms and paraclinical indicators of patients with chronic spinal cord injury (SCI). A big gap in front of researchers and doctors is to know the source, the number of cells required for injection, the delivery method, and the required complementary treatments. We extracted the desired data (number of cells, autologous or allogeneic source of cell extraction, delivery method, and complementary treatments) from 40 clinical trials, which checked and recorded 17 scores of symptoms and paraclinical indicators in at least two studies. The most common cells for improving 11 scores were bone marrow hematopoietic stem cell and bone marrow mesenchymal stem cell. The mean effect was more in bone marrow mesenchymal stem cell with plasma as the complementary treatment. Then the highest mean effect was in bone marrow hematopoietic stem cell therapy, with the complementary treatment being methylprednisolone. The cell number (10<sup>6</sup>/kg), the source (autologous), and the delivery method (intrathecal) were similar in both cell types. No life-threatening consequences or death were recorded. This guideline helps researchers and doctors choose the appropriate cell therapy method for chronic SCI.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"174-180"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guide for Cell Therapy in Human Chronic Spinal Cord Injury.\",\"authors\":\"Reyhaneh Abolghasemi, Esmat Davoudi-Monfared\",\"doi\":\"10.1089/ten.tec.2025.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Based on various research, different cells are effective for improving the symptoms and paraclinical indicators of patients with chronic spinal cord injury (SCI). A big gap in front of researchers and doctors is to know the source, the number of cells required for injection, the delivery method, and the required complementary treatments. We extracted the desired data (number of cells, autologous or allogeneic source of cell extraction, delivery method, and complementary treatments) from 40 clinical trials, which checked and recorded 17 scores of symptoms and paraclinical indicators in at least two studies. The most common cells for improving 11 scores were bone marrow hematopoietic stem cell and bone marrow mesenchymal stem cell. The mean effect was more in bone marrow mesenchymal stem cell with plasma as the complementary treatment. Then the highest mean effect was in bone marrow hematopoietic stem cell therapy, with the complementary treatment being methylprednisolone. The cell number (10<sup>6</sup>/kg), the source (autologous), and the delivery method (intrathecal) were similar in both cell types. No life-threatening consequences or death were recorded. This guideline helps researchers and doctors choose the appropriate cell therapy method for chronic SCI.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"174-180\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2025.0032\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Guide for Cell Therapy in Human Chronic Spinal Cord Injury.
Based on various research, different cells are effective for improving the symptoms and paraclinical indicators of patients with chronic spinal cord injury (SCI). A big gap in front of researchers and doctors is to know the source, the number of cells required for injection, the delivery method, and the required complementary treatments. We extracted the desired data (number of cells, autologous or allogeneic source of cell extraction, delivery method, and complementary treatments) from 40 clinical trials, which checked and recorded 17 scores of symptoms and paraclinical indicators in at least two studies. The most common cells for improving 11 scores were bone marrow hematopoietic stem cell and bone marrow mesenchymal stem cell. The mean effect was more in bone marrow mesenchymal stem cell with plasma as the complementary treatment. Then the highest mean effect was in bone marrow hematopoietic stem cell therapy, with the complementary treatment being methylprednisolone. The cell number (106/kg), the source (autologous), and the delivery method (intrathecal) were similar in both cell types. No life-threatening consequences or death were recorded. This guideline helps researchers and doctors choose the appropriate cell therapy method for chronic SCI.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.