Samantha Reina O'Connell, Susan R S Bissmeyer, Helena Gan, Raymond Lee Goldsworthy
{"title":"更换乐器如何影响人工耳蜗使用者的音高辨别。","authors":"Samantha Reina O'Connell, Susan R S Bissmeyer, Helena Gan, Raymond Lee Goldsworthy","doi":"10.1097/AUD.0000000000001640","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Cochlear implant (CI) users struggle with music perception. Generally, they have poorer pitch discrimination and timbre identification than peers with normal hearing, which reduces their overall music appreciation and quality of life. This study's primary aim was to characterize how the increased difficulty of comparing pitch changes across musical instruments affects CI users and their peers with no known hearing loss. The motivation is to better understand the challenges that CI users face with polyphonic music listening. The primary hypothesis was that CI users would be more affected by instrument switching than those with no known hearing loss. The rationale was that poorer pitch and timbre perception through a CI hinders the disassociation between pitch and timbre changes needed for this demanding task.</p><p><strong>Design: </strong>Pitch discrimination was measured for piano and tenor saxophone including conditions with pitch comparisons across instruments. Adult participants included 15 CI users and 15 peers with no known hearing loss. Pitch discrimination was measured for 4 note ranges centered on A2 (110 Hz), A3 (220 Hz), A4 (440 Hz), and A5 (880 Hz). The effect of instrument switching was quantified as the change in discrimination thresholds with and without instrument switching. Analysis of variance and Spearman's rank correlation were used to test group differences and relational outcomes, respectively.</p><p><strong>Results: </strong>Although CI users had worse pitch discrimination, the additional difficulty of instrument switching did not significantly differ between groups. Discrimination thresholds in both groups were about two times worse with instrument switching than without. Further analyses, however, revealed that CI users were biased toward ranking tenor saxophone higher in pitch compared with piano, whereas those with no known hearing loss were not so biased. In addition, CI users were significantly more affected by instrument switching for the A5 note range.</p><p><strong>Conclusions: </strong>The magnitude of the effect of instrument switching on pitch resolution was similar for CI users and their peers with no known hearing loss. However, CI users were biased toward ranking tenor saxophone as higher in pitch and were significantly more affected by instrument switching for pitches near A5. These findings might reflect poorer temporal coding of fundamental frequency by CIs.</p>","PeriodicalId":55172,"journal":{"name":"Ear and Hearing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Switching Musical Instruments Affects Pitch Discrimination for Cochlear Implant Users.\",\"authors\":\"Samantha Reina O'Connell, Susan R S Bissmeyer, Helena Gan, Raymond Lee Goldsworthy\",\"doi\":\"10.1097/AUD.0000000000001640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Cochlear implant (CI) users struggle with music perception. Generally, they have poorer pitch discrimination and timbre identification than peers with normal hearing, which reduces their overall music appreciation and quality of life. This study's primary aim was to characterize how the increased difficulty of comparing pitch changes across musical instruments affects CI users and their peers with no known hearing loss. The motivation is to better understand the challenges that CI users face with polyphonic music listening. The primary hypothesis was that CI users would be more affected by instrument switching than those with no known hearing loss. The rationale was that poorer pitch and timbre perception through a CI hinders the disassociation between pitch and timbre changes needed for this demanding task.</p><p><strong>Design: </strong>Pitch discrimination was measured for piano and tenor saxophone including conditions with pitch comparisons across instruments. Adult participants included 15 CI users and 15 peers with no known hearing loss. Pitch discrimination was measured for 4 note ranges centered on A2 (110 Hz), A3 (220 Hz), A4 (440 Hz), and A5 (880 Hz). The effect of instrument switching was quantified as the change in discrimination thresholds with and without instrument switching. Analysis of variance and Spearman's rank correlation were used to test group differences and relational outcomes, respectively.</p><p><strong>Results: </strong>Although CI users had worse pitch discrimination, the additional difficulty of instrument switching did not significantly differ between groups. Discrimination thresholds in both groups were about two times worse with instrument switching than without. Further analyses, however, revealed that CI users were biased toward ranking tenor saxophone higher in pitch compared with piano, whereas those with no known hearing loss were not so biased. In addition, CI users were significantly more affected by instrument switching for the A5 note range.</p><p><strong>Conclusions: </strong>The magnitude of the effect of instrument switching on pitch resolution was similar for CI users and their peers with no known hearing loss. However, CI users were biased toward ranking tenor saxophone as higher in pitch and were significantly more affected by instrument switching for pitches near A5. These findings might reflect poorer temporal coding of fundamental frequency by CIs.</p>\",\"PeriodicalId\":55172,\"journal\":{\"name\":\"Ear and Hearing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ear and Hearing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/AUD.0000000000001640\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ear and Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AUD.0000000000001640","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
How Switching Musical Instruments Affects Pitch Discrimination for Cochlear Implant Users.
Objectives: Cochlear implant (CI) users struggle with music perception. Generally, they have poorer pitch discrimination and timbre identification than peers with normal hearing, which reduces their overall music appreciation and quality of life. This study's primary aim was to characterize how the increased difficulty of comparing pitch changes across musical instruments affects CI users and their peers with no known hearing loss. The motivation is to better understand the challenges that CI users face with polyphonic music listening. The primary hypothesis was that CI users would be more affected by instrument switching than those with no known hearing loss. The rationale was that poorer pitch and timbre perception through a CI hinders the disassociation between pitch and timbre changes needed for this demanding task.
Design: Pitch discrimination was measured for piano and tenor saxophone including conditions with pitch comparisons across instruments. Adult participants included 15 CI users and 15 peers with no known hearing loss. Pitch discrimination was measured for 4 note ranges centered on A2 (110 Hz), A3 (220 Hz), A4 (440 Hz), and A5 (880 Hz). The effect of instrument switching was quantified as the change in discrimination thresholds with and without instrument switching. Analysis of variance and Spearman's rank correlation were used to test group differences and relational outcomes, respectively.
Results: Although CI users had worse pitch discrimination, the additional difficulty of instrument switching did not significantly differ between groups. Discrimination thresholds in both groups were about two times worse with instrument switching than without. Further analyses, however, revealed that CI users were biased toward ranking tenor saxophone higher in pitch compared with piano, whereas those with no known hearing loss were not so biased. In addition, CI users were significantly more affected by instrument switching for the A5 note range.
Conclusions: The magnitude of the effect of instrument switching on pitch resolution was similar for CI users and their peers with no known hearing loss. However, CI users were biased toward ranking tenor saxophone as higher in pitch and were significantly more affected by instrument switching for pitches near A5. These findings might reflect poorer temporal coding of fundamental frequency by CIs.
期刊介绍:
From the basic science of hearing and balance disorders to auditory electrophysiology to amplification and the psychological factors of hearing loss, Ear and Hearing covers all aspects of auditory and vestibular disorders. This multidisciplinary journal consolidates the various factors that contribute to identification, remediation, and audiologic and vestibular rehabilitation. It is the one journal that serves the diverse interest of all members of this professional community -- otologists, audiologists, educators, and to those involved in the design, manufacture, and distribution of amplification systems. The original articles published in the journal focus on assessment, diagnosis, and management of auditory and vestibular disorders.