数字孪生揭示了二维材料合成中前驱体通量在调制成核密度中的关键作用。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abhinav Sinha, Manvi Verma, Nandeesh Kumar K M, Keerthana S Kumar, Ananth Govind Rajan, Akshay Singh
{"title":"数字孪生揭示了二维材料合成中前驱体通量在调制成核密度中的关键作用。","authors":"Abhinav Sinha, Manvi Verma, Nandeesh Kumar K M, Keerthana S Kumar, Ananth Govind Rajan, Akshay Singh","doi":"10.1039/d5na00202h","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical vapor deposition (CVD) is the most widespread approach for two-dimensional (2D) material synthesis, yet control of nucleation density remains a major hurdle towards large-area growth. We find that precursor flux, a function of gas velocity and precursor concentration, is the critical parameter controlling nucleation. We observe that for a vertically aligned substrate, the presence of a cavity/slot in the substrate-supporting plate creates an enhanced growth zone for 2D-MoS<sub>2</sub>. The effect of this confined space on nucleation density is experimentally verified by electron microscopy. To understand this intriguing observation, we developed a hyper-realistic multiphysics computational fluid dynamics model, <i>i.e.</i>, a digital twin of our CVD reactor, which reveals that space confinement achieves nearly-zero gas velocities. Digital twin-informed calculations indicate a significantly lower metal precursor flux at the confined space during the initial stages of growth, while precursor concentration is uniform across the substrate. The digital twin also makes an important prediction regarding a large time-lag between the set temperature, reactor environmental temperature, and substrate temperature, with implications for nucleation and growth. We offer a framework for designing confined spaces to control nucleation <i>via</i> regulating precursor flux, and for simulating reactor parameters for rapid optimization <i>via</i> the digital-twin model.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056668/pdf/","citationCount":"0","resultStr":"{\"title\":\"Critical role of precursor flux in modulating nucleation density in 2D material synthesis revealed by a digital twin.\",\"authors\":\"Abhinav Sinha, Manvi Verma, Nandeesh Kumar K M, Keerthana S Kumar, Ananth Govind Rajan, Akshay Singh\",\"doi\":\"10.1039/d5na00202h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical vapor deposition (CVD) is the most widespread approach for two-dimensional (2D) material synthesis, yet control of nucleation density remains a major hurdle towards large-area growth. We find that precursor flux, a function of gas velocity and precursor concentration, is the critical parameter controlling nucleation. We observe that for a vertically aligned substrate, the presence of a cavity/slot in the substrate-supporting plate creates an enhanced growth zone for 2D-MoS<sub>2</sub>. The effect of this confined space on nucleation density is experimentally verified by electron microscopy. To understand this intriguing observation, we developed a hyper-realistic multiphysics computational fluid dynamics model, <i>i.e.</i>, a digital twin of our CVD reactor, which reveals that space confinement achieves nearly-zero gas velocities. Digital twin-informed calculations indicate a significantly lower metal precursor flux at the confined space during the initial stages of growth, while precursor concentration is uniform across the substrate. The digital twin also makes an important prediction regarding a large time-lag between the set temperature, reactor environmental temperature, and substrate temperature, with implications for nucleation and growth. We offer a framework for designing confined spaces to control nucleation <i>via</i> regulating precursor flux, and for simulating reactor parameters for rapid optimization <i>via</i> the digital-twin model.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12056668/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00202h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00202h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学气相沉积(CVD)是二维(2D)材料合成中最广泛的方法,但成核密度的控制仍然是实现大面积生长的主要障碍。我们发现前驱体通量是气速和前驱体浓度的函数,是控制成核的关键参数。我们观察到,对于垂直排列的衬底,衬底支撑板中的腔/槽的存在为2D-MoS2创造了一个增强的生长区域。用电镜实验验证了这种密闭空间对成核密度的影响。为了理解这一有趣的观察结果,我们开发了一个超现实的多物理场计算流体动力学模型,即我们的CVD反应器的数字孪生,它揭示了空间约束实现了接近零的气体速度。数字双信息计算表明,在生长的初始阶段,在密闭空间中金属前驱体通量明显较低,而前驱体浓度在整个衬底上是均匀的。数字孪生还对设定温度、反应器环境温度和衬底温度之间的大时滞做出了重要预测,这对成核和生长有影响。我们提供了一个框架来设计封闭空间,通过调节前驱体通量来控制成核,并通过数字孪生模型模拟反应堆参数以实现快速优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical role of precursor flux in modulating nucleation density in 2D material synthesis revealed by a digital twin.

Chemical vapor deposition (CVD) is the most widespread approach for two-dimensional (2D) material synthesis, yet control of nucleation density remains a major hurdle towards large-area growth. We find that precursor flux, a function of gas velocity and precursor concentration, is the critical parameter controlling nucleation. We observe that for a vertically aligned substrate, the presence of a cavity/slot in the substrate-supporting plate creates an enhanced growth zone for 2D-MoS2. The effect of this confined space on nucleation density is experimentally verified by electron microscopy. To understand this intriguing observation, we developed a hyper-realistic multiphysics computational fluid dynamics model, i.e., a digital twin of our CVD reactor, which reveals that space confinement achieves nearly-zero gas velocities. Digital twin-informed calculations indicate a significantly lower metal precursor flux at the confined space during the initial stages of growth, while precursor concentration is uniform across the substrate. The digital twin also makes an important prediction regarding a large time-lag between the set temperature, reactor environmental temperature, and substrate temperature, with implications for nucleation and growth. We offer a framework for designing confined spaces to control nucleation via regulating precursor flux, and for simulating reactor parameters for rapid optimization via the digital-twin model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信