中国某医院12年来大肠杆菌耐药性和毒力基因的遗传进化

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Chengjie Feng, Hongbing Jia, Qian Yang, Qinghua Zou
{"title":"中国某医院12年来大肠杆菌耐药性和毒力基因的遗传进化","authors":"Chengjie Feng, Hongbing Jia, Qian Yang, Qinghua Zou","doi":"10.3390/microorganisms13040954","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli</i> is a significant pathogen capable of inducing a variety of infections in both human and animal hosts. Despite its clinical significance, there is a lack of longitudinal research aimed at elucidating the genomic attributes that facilitate antimicrobial resistance and clonal dissemination in this bacterium. In this study, we investigated the genetic dynamics of antibiotic resistance and virulence factors within a collection of 137 <i>E. coli</i> isolates retrieved from a Chinese hospital over a 12-year period. Notably, a substantial increase in resistance to various antibiotics, including broad-spectrum β-lactams, aminoglycosides, and quinolones, was observed. Additionally, our study revealed the acquisition of diverse antibiotic resistance and virulence genes across different sequence types (STs). Among the STs, ST131 emerged as the most prevalent, exhibiting a high level of multidrug resistance. In contrast, ST73 and ST12 demonstrated a higher prevalence of virulence genes, suggestive of a potential trade-off between antibiotic resistance and virulence. What's more, we identified significant intra-clonal diversification and convergence of antibiotic resistance and virulence traits within the dominant ST131 group. These findings underscore the importance of longitudinal studies in understanding the evolution of bacterial pathogens and the necessity for ongoing research to inform public health strategies.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 4","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029843/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic Evolution of Antibiotic Resistance and Virulence Genes in <i>Escherichia coli</i> Isolates from a Chinese Hospital over a 12-Year Period.\",\"authors\":\"Chengjie Feng, Hongbing Jia, Qian Yang, Qinghua Zou\",\"doi\":\"10.3390/microorganisms13040954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Escherichia coli</i> is a significant pathogen capable of inducing a variety of infections in both human and animal hosts. Despite its clinical significance, there is a lack of longitudinal research aimed at elucidating the genomic attributes that facilitate antimicrobial resistance and clonal dissemination in this bacterium. In this study, we investigated the genetic dynamics of antibiotic resistance and virulence factors within a collection of 137 <i>E. coli</i> isolates retrieved from a Chinese hospital over a 12-year period. Notably, a substantial increase in resistance to various antibiotics, including broad-spectrum β-lactams, aminoglycosides, and quinolones, was observed. Additionally, our study revealed the acquisition of diverse antibiotic resistance and virulence genes across different sequence types (STs). Among the STs, ST131 emerged as the most prevalent, exhibiting a high level of multidrug resistance. In contrast, ST73 and ST12 demonstrated a higher prevalence of virulence genes, suggestive of a potential trade-off between antibiotic resistance and virulence. What's more, we identified significant intra-clonal diversification and convergence of antibiotic resistance and virulence traits within the dominant ST131 group. These findings underscore the importance of longitudinal studies in understanding the evolution of bacterial pathogens and the necessity for ongoing research to inform public health strategies.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029843/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13040954\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13040954","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大肠杆菌是一种重要的病原体,能够在人类和动物宿主中诱导多种感染。尽管具有临床意义,但缺乏旨在阐明促进该细菌抗菌素耐药性和克隆传播的基因组属性的纵向研究。在这项研究中,我们调查了从中国一家医院收集的137株大肠杆菌在12年期间的抗生素耐药性和毒力因子的遗传动力学。值得注意的是,观察到对各种抗生素的耐药性大幅增加,包括广谱β-内酰胺类、氨基糖苷类和喹诺酮类。此外,我们的研究揭示了在不同序列类型(STs)中获得不同的抗生素抗性和毒力基因。在这些STs中,ST131最为普遍,表现出高度的多药耐药。相比之下,ST73和ST12表现出更高的毒力基因,提示抗生素耐药性和毒力之间存在潜在的权衡。更重要的是,我们发现优势ST131群体中抗生素耐药性和毒力性状的克隆内多样化和趋同。这些发现强调了纵向研究在了解细菌性病原体进化方面的重要性,以及为公共卫生战略提供信息进行持续研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Evolution of Antibiotic Resistance and Virulence Genes in Escherichia coli Isolates from a Chinese Hospital over a 12-Year Period.

Escherichia coli is a significant pathogen capable of inducing a variety of infections in both human and animal hosts. Despite its clinical significance, there is a lack of longitudinal research aimed at elucidating the genomic attributes that facilitate antimicrobial resistance and clonal dissemination in this bacterium. In this study, we investigated the genetic dynamics of antibiotic resistance and virulence factors within a collection of 137 E. coli isolates retrieved from a Chinese hospital over a 12-year period. Notably, a substantial increase in resistance to various antibiotics, including broad-spectrum β-lactams, aminoglycosides, and quinolones, was observed. Additionally, our study revealed the acquisition of diverse antibiotic resistance and virulence genes across different sequence types (STs). Among the STs, ST131 emerged as the most prevalent, exhibiting a high level of multidrug resistance. In contrast, ST73 and ST12 demonstrated a higher prevalence of virulence genes, suggestive of a potential trade-off between antibiotic resistance and virulence. What's more, we identified significant intra-clonal diversification and convergence of antibiotic resistance and virulence traits within the dominant ST131 group. These findings underscore the importance of longitudinal studies in understanding the evolution of bacterial pathogens and the necessity for ongoing research to inform public health strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信