金属二硫族化合物二维范德华异质结构的直接取向外延。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-31 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf119
Shenghong Liu, Ke Qin, Jiashu Yang, Tao Hu, Hao Luo, Jingsong Wu, Zhen Cui, Taotao Li, Feng Ding, Xinran Wang, Yuan Li, Tianyou Zhai
{"title":"金属二硫族化合物二维范德华异质结构的直接取向外延。","authors":"Shenghong Liu, Ke Qin, Jiashu Yang, Tao Hu, Hao Luo, Jingsong Wu, Zhen Cui, Taotao Li, Feng Ding, Xinran Wang, Yuan Li, Tianyou Zhai","doi":"10.1093/nsr/nwaf119","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf119"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042757/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct orientational epitaxy of wafer-scale 2D van der Waals heterostructures of metal dichalcogenides.\",\"authors\":\"Shenghong Liu, Ke Qin, Jiashu Yang, Tao Hu, Hao Luo, Jingsong Wu, Zhen Cui, Taotao Li, Feng Ding, Xinran Wang, Yuan Li, Tianyou Zhai\",\"doi\":\"10.1093/nsr/nwaf119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 5\",\"pages\":\"nwaf119\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf119\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf119","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)范德华(vdW)异质结构由于其可调谐的能带结构、原子锐界面和与互补金属氧化物半导体技术的无缝兼容性,已成为未来集成电路的突破性候选材料。尽管它们前景光明,但现有的合成方法,如机械转移和气相转化,难以实现实际应用的高质量、可扩展的生产。为了应对这些长期存在的挑战,我们的研究首次揭示了具有卓越质量和均匀性的晶圆级2D vdW异质结构(MoS[公式:见文]/SnS[公式:见文])的直接外延生长。这一成就是通过从根本上增强中间体和底层材料之间的吸附相互作用而实现的。异质结构显示出原始的、无缺陷的界面、一致的晶体取向和晶圆级厚度均匀性。MoS[公式:见文]和SnS[公式:见文]的拉曼峰移在整个晶圆上被限制在0.5 cm以下[公式:见文],强度偏差保持在令人印象深刻的2%以内,厚度均匀性超过99.5%。由于其优异的结晶度和界面质量,异质结构表现出非凡的电子和空穴转移能力,表现出突出的整流效应和惊人的响应率[公式:见文本]a /W,平均来自30个器件。我们的研究标志着将二维材料集成到半导体技术中的关键进步,为下一代集成电路铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct orientational epitaxy of wafer-scale 2D van der Waals heterostructures of metal dichalcogenides.

Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信