Sri Sathya Sandilya Garemilla, Siri Chandana Gampa, Sireesha Garimella
{"title":"肿瘤微环境在癌症治疗中的作用:揭示克服耐药的新靶点。","authors":"Sri Sathya Sandilya Garemilla, Siri Chandana Gampa, Sireesha Garimella","doi":"10.1007/s12032-025-02754-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 6","pages":"202"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance.\",\"authors\":\"Sri Sathya Sandilya Garemilla, Siri Chandana Gampa, Sireesha Garimella\",\"doi\":\"10.1007/s12032-025-02754-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":\"42 6\",\"pages\":\"202\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-025-02754-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02754-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance.
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.