Dasheng Li, Yisong Ju, Qingsong Ye, Yuanyuan Chang, Chaoli An, Beibei Liu, Li Lu, Jinhui Wu, Xiaozhi Zhao
{"title":"载氧的全氟碳纳米颗粒通过改善肾氧合水平减轻急性肾损伤。","authors":"Dasheng Li, Yisong Ju, Qingsong Ye, Yuanyuan Chang, Chaoli An, Beibei Liu, Li Lu, Jinhui Wu, Xiaozhi Zhao","doi":"10.34133/bmr.0181","DOIUrl":null,"url":null,"abstract":"<p><p>Renal microcirculatory disturbances and tissue hypoxia play a pivotal role in acute kidney injury (AKI) initiation and progression, and addressing renal hypoxia during the acute phase presents a promising therapeutic strategy for preventing AKI or protecting kidney function. In this study, we explored the renal protective potential of perfluorocarbon nanoparticles (PFPs), engineered for superior oxygen-carrying and delivery capacities, in an AKI mouse. Specifically, PFP-treated mice exhibited significant reductions in tubular dilation, necrosis, and brush border loss in renal tubules. Additionally, PFP pretreatment reduced tissue inflammation and fibrosis, as indicated by decreased nuclear factor-kappa B, α-smooth muscle actin, fibronectin, and collagen I expression. Serum creatinine and blood urea nitrogen levels improved, decreasing by 26.9% and 41.7%, respectively. Flow cytometry further showed controlled levels of f4/80<sup>+</sup> macrophages and CD45<sup>+</sup> inflammatory markers, with f4/80<sup>+</sup> macrophages reduced by approximately 31.2% and CD45<sup>+</sup> inflammatory factors reduced by 40.5%. Metabolomic analyses highlighted PFP's modulation of key metabolic pathways linked to renal recovery, notably up-regulating slc22a19 by 48.3%, a gene encoding a short-chain fatty acid transporter, and down-regulating hyaluronic acid synthesis in renal tissue. These findings are the first to demonstrate that PFPs, as an oxygen carrier, can enhance renal resilience against IR (ischemia-reperfusion)-induced AKI, offering compelling evidence of PFP's clinical potential in AKI management.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0181"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Perfluorocarbon Nanoparticles Loaded with Oxygen Alleviate Acute Kidney Injury via Ameliorating Renal Oxygenation Level.\",\"authors\":\"Dasheng Li, Yisong Ju, Qingsong Ye, Yuanyuan Chang, Chaoli An, Beibei Liu, Li Lu, Jinhui Wu, Xiaozhi Zhao\",\"doi\":\"10.34133/bmr.0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renal microcirculatory disturbances and tissue hypoxia play a pivotal role in acute kidney injury (AKI) initiation and progression, and addressing renal hypoxia during the acute phase presents a promising therapeutic strategy for preventing AKI or protecting kidney function. In this study, we explored the renal protective potential of perfluorocarbon nanoparticles (PFPs), engineered for superior oxygen-carrying and delivery capacities, in an AKI mouse. Specifically, PFP-treated mice exhibited significant reductions in tubular dilation, necrosis, and brush border loss in renal tubules. Additionally, PFP pretreatment reduced tissue inflammation and fibrosis, as indicated by decreased nuclear factor-kappa B, α-smooth muscle actin, fibronectin, and collagen I expression. Serum creatinine and blood urea nitrogen levels improved, decreasing by 26.9% and 41.7%, respectively. Flow cytometry further showed controlled levels of f4/80<sup>+</sup> macrophages and CD45<sup>+</sup> inflammatory markers, with f4/80<sup>+</sup> macrophages reduced by approximately 31.2% and CD45<sup>+</sup> inflammatory factors reduced by 40.5%. Metabolomic analyses highlighted PFP's modulation of key metabolic pathways linked to renal recovery, notably up-regulating slc22a19 by 48.3%, a gene encoding a short-chain fatty acid transporter, and down-regulating hyaluronic acid synthesis in renal tissue. These findings are the first to demonstrate that PFPs, as an oxygen carrier, can enhance renal resilience against IR (ischemia-reperfusion)-induced AKI, offering compelling evidence of PFP's clinical potential in AKI management.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0181\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Perfluorocarbon Nanoparticles Loaded with Oxygen Alleviate Acute Kidney Injury via Ameliorating Renal Oxygenation Level.
Renal microcirculatory disturbances and tissue hypoxia play a pivotal role in acute kidney injury (AKI) initiation and progression, and addressing renal hypoxia during the acute phase presents a promising therapeutic strategy for preventing AKI or protecting kidney function. In this study, we explored the renal protective potential of perfluorocarbon nanoparticles (PFPs), engineered for superior oxygen-carrying and delivery capacities, in an AKI mouse. Specifically, PFP-treated mice exhibited significant reductions in tubular dilation, necrosis, and brush border loss in renal tubules. Additionally, PFP pretreatment reduced tissue inflammation and fibrosis, as indicated by decreased nuclear factor-kappa B, α-smooth muscle actin, fibronectin, and collagen I expression. Serum creatinine and blood urea nitrogen levels improved, decreasing by 26.9% and 41.7%, respectively. Flow cytometry further showed controlled levels of f4/80+ macrophages and CD45+ inflammatory markers, with f4/80+ macrophages reduced by approximately 31.2% and CD45+ inflammatory factors reduced by 40.5%. Metabolomic analyses highlighted PFP's modulation of key metabolic pathways linked to renal recovery, notably up-regulating slc22a19 by 48.3%, a gene encoding a short-chain fatty acid transporter, and down-regulating hyaluronic acid synthesis in renal tissue. These findings are the first to demonstrate that PFPs, as an oxygen carrier, can enhance renal resilience against IR (ischemia-reperfusion)-induced AKI, offering compelling evidence of PFP's clinical potential in AKI management.