{"title":"帮助酶:草酰乙酸脱羧酶增加苹果酸脱氢酶的周转数。","authors":"Gadiel Saper, Henry Hess","doi":"10.1093/pnasnexus/pgaf134","DOIUrl":null,"url":null,"abstract":"<p><p>The catalytic performance of enzymes is largely perceived to be a property of the enzyme itself, altered by environmental conditions, such as temperature and pH. However, the maximal catalytic rates of enzymes differ up to 100-fold between in vivo and in vitro measurements, suggesting that a complex chemical system has additional effects on catalytic performance. In this work, we show that the initial rate of an enzyme can increase 3-fold due to the presence of a second enzyme, which uses the product of the first enzyme as its substrate. This enhancement may originate in an allosteric effect or result from binding competition for the product molecule by the second enzyme.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 5","pages":"pgaf134"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enzymes helping enzymes: Oxaloacetate decarboxylase increases malate dehydrogenase's turnover number.\",\"authors\":\"Gadiel Saper, Henry Hess\",\"doi\":\"10.1093/pnasnexus/pgaf134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The catalytic performance of enzymes is largely perceived to be a property of the enzyme itself, altered by environmental conditions, such as temperature and pH. However, the maximal catalytic rates of enzymes differ up to 100-fold between in vivo and in vitro measurements, suggesting that a complex chemical system has additional effects on catalytic performance. In this work, we show that the initial rate of an enzyme can increase 3-fold due to the presence of a second enzyme, which uses the product of the first enzyme as its substrate. This enhancement may originate in an allosteric effect or result from binding competition for the product molecule by the second enzyme.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 5\",\"pages\":\"pgaf134\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The catalytic performance of enzymes is largely perceived to be a property of the enzyme itself, altered by environmental conditions, such as temperature and pH. However, the maximal catalytic rates of enzymes differ up to 100-fold between in vivo and in vitro measurements, suggesting that a complex chemical system has additional effects on catalytic performance. In this work, we show that the initial rate of an enzyme can increase 3-fold due to the presence of a second enzyme, which uses the product of the first enzyme as its substrate. This enhancement may originate in an allosteric effect or result from binding competition for the product molecule by the second enzyme.