Betül Topçu İnce, Samuel Guieu, Selin Seda Timur, Tuba Reçber, Emirhan Nemutlu, Maria Helena Vaz Fernandes, Hakan Eroğlu
{"title":"美金刚和多奈哌齐负载3D支架的设计与表征。","authors":"Betül Topçu İnce, Samuel Guieu, Selin Seda Timur, Tuba Reçber, Emirhan Nemutlu, Maria Helena Vaz Fernandes, Hakan Eroğlu","doi":"10.1080/10837450.2025.2493256","DOIUrl":null,"url":null,"abstract":"<p><p>Memantine HCl (MEM) and Donepezil HCl (DON) are widely used separately and in combination to treat Alzheimer's disease, and some studies suggest that these drugs may also prevent bone fractures and promote bone regeneration. For this purpose, we formulated fiber-based 3D scaffolds for local delivery of MEM/DON to improve the regeneration process of bone fractures. First, Poly (ε-caprolactone) (PCL)-based MEM/DON-loaded nanofibrous membranes were produced by electrospinning, and then these nanofibrous membranes were transformed into 3D scaffolds using the thermally induced self-agglomeration (TISA) method. Encapsulation efficiency after these two steps was found to be around 20%. Analyses confirmed that the 3D scaffolds have a morphology similar to the extracellular matrix, and that their hydrophilicity, swelling ratio, porosity, and degradation rate were adequate for bone tissue regeneration. Release studies show that the scaffolds provide an initial burst release of the drugs, followed by a sustained release for 21 days. These 3D scaffolds did not show any cytotoxic effect on the L-929 cell line, and increased cell viability over time indicates that they can be used in tissue engineering applications.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"488-504"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and characterization of memantine and donepezil loaded 3D scaffolds.\",\"authors\":\"Betül Topçu İnce, Samuel Guieu, Selin Seda Timur, Tuba Reçber, Emirhan Nemutlu, Maria Helena Vaz Fernandes, Hakan Eroğlu\",\"doi\":\"10.1080/10837450.2025.2493256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Memantine HCl (MEM) and Donepezil HCl (DON) are widely used separately and in combination to treat Alzheimer's disease, and some studies suggest that these drugs may also prevent bone fractures and promote bone regeneration. For this purpose, we formulated fiber-based 3D scaffolds for local delivery of MEM/DON to improve the regeneration process of bone fractures. First, Poly (ε-caprolactone) (PCL)-based MEM/DON-loaded nanofibrous membranes were produced by electrospinning, and then these nanofibrous membranes were transformed into 3D scaffolds using the thermally induced self-agglomeration (TISA) method. Encapsulation efficiency after these two steps was found to be around 20%. Analyses confirmed that the 3D scaffolds have a morphology similar to the extracellular matrix, and that their hydrophilicity, swelling ratio, porosity, and degradation rate were adequate for bone tissue regeneration. Release studies show that the scaffolds provide an initial burst release of the drugs, followed by a sustained release for 21 days. These 3D scaffolds did not show any cytotoxic effect on the L-929 cell line, and increased cell viability over time indicates that they can be used in tissue engineering applications.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"488-504\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2493256\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2493256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Design and characterization of memantine and donepezil loaded 3D scaffolds.
Memantine HCl (MEM) and Donepezil HCl (DON) are widely used separately and in combination to treat Alzheimer's disease, and some studies suggest that these drugs may also prevent bone fractures and promote bone regeneration. For this purpose, we formulated fiber-based 3D scaffolds for local delivery of MEM/DON to improve the regeneration process of bone fractures. First, Poly (ε-caprolactone) (PCL)-based MEM/DON-loaded nanofibrous membranes were produced by electrospinning, and then these nanofibrous membranes were transformed into 3D scaffolds using the thermally induced self-agglomeration (TISA) method. Encapsulation efficiency after these two steps was found to be around 20%. Analyses confirmed that the 3D scaffolds have a morphology similar to the extracellular matrix, and that their hydrophilicity, swelling ratio, porosity, and degradation rate were adequate for bone tissue regeneration. Release studies show that the scaffolds provide an initial burst release of the drugs, followed by a sustained release for 21 days. These 3D scaffolds did not show any cytotoxic effect on the L-929 cell line, and increased cell viability over time indicates that they can be used in tissue engineering applications.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.