Andrew McCormack, Vicki Stone, James McQuat, Helinor Johnston
{"title":"研究分散方案对纳米材料的物理化学特性和毒性的影响:对二氧化钛颗粒的文献综述。","authors":"Andrew McCormack, Vicki Stone, James McQuat, Helinor Johnston","doi":"10.1186/s12989-025-00627-8","DOIUrl":null,"url":null,"abstract":"<p><p>Particles often require dispersion in aqueous media to allow assessment of their hazard profile. The approach used to disperse particles is not consistent in the published literature, with approaches including stirring, vortexing, shaking or sonication, and the use of biological or chemical stabilisers. Such variations in the dispersion protocol can influence the physico-chemical (PC) identity and toxicity of particles. To better understand the protocol variations and their impacts on human health, this work identified and critically reviewed publications with a specific focus on titanium dioxide (TiO<sub>2</sub>), which was dominated by nanomaterials (NMs). This review included consideration of both in vitro and in vivo studies, as well as other NMs to help address knowledge gaps and identify any lessons that can be learnt and applied to TiO<sub>2</sub>. Overall, the evidence gathered showed that variations in the dispersion protocol, specifically the method and parameters of sonication (e.g. power and duration), as well as the dispersion medium choice (and inclusion of biological and chemical stabilisers), were impactful on NM agglomerate size. There is no consensus as to whether a reduction or increase in NM agglomeration enhances or reduces NM toxicity with the outcome of the study dependent on the experimental design (e.g. PC properties of the NM being tested, test model used, time point, and concentrations/doses assessed). Whilst standard protocols for NM dispersion have been generated, they have not been widely adopted and there is unlikely to be one protocol that can be applied to all NMs and test models. Instead, more guidance is needed to inform the considerations that should guide preparation of NM suspensions for hazard testing. These include a recommendation that pilot studies are performed to identify the most suitable dispersion protocol before embarking on a toxicology study. Improved knowledge of the impact of dispersion protocols on PC identity and toxicity of TiO<sub>2</sub> will assist in the interpretation of existing toxicology data and feed into the design of future studies which assess TiO<sub>2</sub> toxicity.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"22 1","pages":"11"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070512/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of the dispersion protocol on the physico-chemical identity and toxicity of nanomaterials: a review of the literature with focus on TiO<sub>2</sub> particles.\",\"authors\":\"Andrew McCormack, Vicki Stone, James McQuat, Helinor Johnston\",\"doi\":\"10.1186/s12989-025-00627-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Particles often require dispersion in aqueous media to allow assessment of their hazard profile. The approach used to disperse particles is not consistent in the published literature, with approaches including stirring, vortexing, shaking or sonication, and the use of biological or chemical stabilisers. Such variations in the dispersion protocol can influence the physico-chemical (PC) identity and toxicity of particles. To better understand the protocol variations and their impacts on human health, this work identified and critically reviewed publications with a specific focus on titanium dioxide (TiO<sub>2</sub>), which was dominated by nanomaterials (NMs). This review included consideration of both in vitro and in vivo studies, as well as other NMs to help address knowledge gaps and identify any lessons that can be learnt and applied to TiO<sub>2</sub>. Overall, the evidence gathered showed that variations in the dispersion protocol, specifically the method and parameters of sonication (e.g. power and duration), as well as the dispersion medium choice (and inclusion of biological and chemical stabilisers), were impactful on NM agglomerate size. There is no consensus as to whether a reduction or increase in NM agglomeration enhances or reduces NM toxicity with the outcome of the study dependent on the experimental design (e.g. PC properties of the NM being tested, test model used, time point, and concentrations/doses assessed). Whilst standard protocols for NM dispersion have been generated, they have not been widely adopted and there is unlikely to be one protocol that can be applied to all NMs and test models. Instead, more guidance is needed to inform the considerations that should guide preparation of NM suspensions for hazard testing. These include a recommendation that pilot studies are performed to identify the most suitable dispersion protocol before embarking on a toxicology study. Improved knowledge of the impact of dispersion protocols on PC identity and toxicity of TiO<sub>2</sub> will assist in the interpretation of existing toxicology data and feed into the design of future studies which assess TiO<sub>2</sub> toxicity.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"22 1\",\"pages\":\"11\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070512/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-025-00627-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-025-00627-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Investigating the impact of the dispersion protocol on the physico-chemical identity and toxicity of nanomaterials: a review of the literature with focus on TiO2 particles.
Particles often require dispersion in aqueous media to allow assessment of their hazard profile. The approach used to disperse particles is not consistent in the published literature, with approaches including stirring, vortexing, shaking or sonication, and the use of biological or chemical stabilisers. Such variations in the dispersion protocol can influence the physico-chemical (PC) identity and toxicity of particles. To better understand the protocol variations and their impacts on human health, this work identified and critically reviewed publications with a specific focus on titanium dioxide (TiO2), which was dominated by nanomaterials (NMs). This review included consideration of both in vitro and in vivo studies, as well as other NMs to help address knowledge gaps and identify any lessons that can be learnt and applied to TiO2. Overall, the evidence gathered showed that variations in the dispersion protocol, specifically the method and parameters of sonication (e.g. power and duration), as well as the dispersion medium choice (and inclusion of biological and chemical stabilisers), were impactful on NM agglomerate size. There is no consensus as to whether a reduction or increase in NM agglomeration enhances or reduces NM toxicity with the outcome of the study dependent on the experimental design (e.g. PC properties of the NM being tested, test model used, time point, and concentrations/doses assessed). Whilst standard protocols for NM dispersion have been generated, they have not been widely adopted and there is unlikely to be one protocol that can be applied to all NMs and test models. Instead, more guidance is needed to inform the considerations that should guide preparation of NM suspensions for hazard testing. These include a recommendation that pilot studies are performed to identify the most suitable dispersion protocol before embarking on a toxicology study. Improved knowledge of the impact of dispersion protocols on PC identity and toxicity of TiO2 will assist in the interpretation of existing toxicology data and feed into the design of future studies which assess TiO2 toxicity.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.