野外灵长类动物行为分析的计算机视觉。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-06-01 Epub Date: 2025-04-10 DOI:10.1038/s41592-025-02653-y
Richard Vogg, Timo Lüddecke, Jonathan Henrich, Sharmita Dey, Matthias Nuske, Valentin Hassler, Derek Murphy, Julia Fischer, Julia Ostner, Oliver Schülke, Peter M Kappeler, Claudia Fichtel, Alexander Gail, Stefan Treue, Hansjörg Scherberger, Florentin Wörgötter, Alexander S Ecker
{"title":"野外灵长类动物行为分析的计算机视觉。","authors":"Richard Vogg, Timo Lüddecke, Jonathan Henrich, Sharmita Dey, Matthias Nuske, Valentin Hassler, Derek Murphy, Julia Fischer, Julia Ostner, Oliver Schülke, Peter M Kappeler, Claudia Fichtel, Alexander Gail, Stefan Treue, Hansjörg Scherberger, Florentin Wörgötter, Alexander S Ecker","doi":"10.1038/s41592-025-02653-y","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in computer vision and increasingly widespread video-based behavioral monitoring are currently transforming how we study animal behavior. However, there is still a gap between the prospects and practical application, especially in videos from the wild. In this Perspective, we aim to present the capabilities of current methods for behavioral analysis, while at the same time highlighting unsolved computer vision problems that are relevant to the study of animal behavior. We survey state-of-the-art methods for computer vision problems relevant to the video-based study of individualized animal behavior, including object detection, multi-animal tracking, individual identification and (inter)action understanding. We then review methods for effort-efficient learning, one of the challenges from a practical perspective. In our outlook on the emerging field of computer vision for animal behavior, we argue that the field should develop approaches to unify detection, tracking, identification and (inter)action understanding in a single, video-based framework.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1154-1166"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computer vision for primate behavior analysis in the wild.\",\"authors\":\"Richard Vogg, Timo Lüddecke, Jonathan Henrich, Sharmita Dey, Matthias Nuske, Valentin Hassler, Derek Murphy, Julia Fischer, Julia Ostner, Oliver Schülke, Peter M Kappeler, Claudia Fichtel, Alexander Gail, Stefan Treue, Hansjörg Scherberger, Florentin Wörgötter, Alexander S Ecker\",\"doi\":\"10.1038/s41592-025-02653-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in computer vision and increasingly widespread video-based behavioral monitoring are currently transforming how we study animal behavior. However, there is still a gap between the prospects and practical application, especially in videos from the wild. In this Perspective, we aim to present the capabilities of current methods for behavioral analysis, while at the same time highlighting unsolved computer vision problems that are relevant to the study of animal behavior. We survey state-of-the-art methods for computer vision problems relevant to the video-based study of individualized animal behavior, including object detection, multi-animal tracking, individual identification and (inter)action understanding. We then review methods for effort-efficient learning, one of the challenges from a practical perspective. In our outlook on the emerging field of computer vision for animal behavior, we argue that the field should develop approaches to unify detection, tracking, identification and (inter)action understanding in a single, video-based framework.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1154-1166\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02653-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02653-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉的进步和日益广泛的基于视频的行为监测正在改变我们研究动物行为的方式。然而,前景与实际应用之间仍有差距,特别是在来自野外的视频中。在这个视角中,我们的目标是展示当前行为分析方法的能力,同时强调与动物行为研究相关的未解决的计算机视觉问题。我们调查了与基于视频的个性化动物行为研究相关的计算机视觉问题的最新方法,包括目标检测,多动物跟踪,个体识别和(相互)动作理解。然后,我们从实践的角度回顾了努力高效学习的方法,这是一个挑战。在我们对新兴的动物行为计算机视觉领域的展望中,我们认为该领域应该在一个单一的、基于视频的框架中开发统一检测、跟踪、识别和(相互)动作理解的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer vision for primate behavior analysis in the wild.

Advances in computer vision and increasingly widespread video-based behavioral monitoring are currently transforming how we study animal behavior. However, there is still a gap between the prospects and practical application, especially in videos from the wild. In this Perspective, we aim to present the capabilities of current methods for behavioral analysis, while at the same time highlighting unsolved computer vision problems that are relevant to the study of animal behavior. We survey state-of-the-art methods for computer vision problems relevant to the video-based study of individualized animal behavior, including object detection, multi-animal tracking, individual identification and (inter)action understanding. We then review methods for effort-efficient learning, one of the challenges from a practical perspective. In our outlook on the emerging field of computer vision for animal behavior, we argue that the field should develop approaches to unify detection, tracking, identification and (inter)action understanding in a single, video-based framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信