Rose Fuggle, Miguel G Matias, Mariana Mayer-Pinto, Ezequiel M Marzinelli
{"title":"多重压力源影响淡水微生物群落的功能而非分类结构。","authors":"Rose Fuggle, Miguel G Matias, Mariana Mayer-Pinto, Ezequiel M Marzinelli","doi":"10.1038/s41522-025-00700-2","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial community responses to environmental stressors are often characterised by assessing changes in taxonomic structure, but such changes, or lack thereof, may not reflect functional changes that are critical to ecosystem processes. We investigated the individual and combined effects of nutrient enrichment ( + 10 mg/L N, + 1 mg/L P) and salinisation ( + 15 g/L NaCl)-key stressors in freshwater systems-on the taxonomic structure and metabolic function of benthic microbial communities using 1000 L open freshwater ponds established >10 years ago in the field. Combined stressors drove strong decreases in maximum and mean total carbon metabolic rates and shifted carbon metabolic profiles compared to either stressor individually and compared to ambient conditions. These metabolic functional changes did not recover through time and occurred without significant alterations in bacterial community taxonomic structure. These results imply that critical functions, including organic carbon release, are likely to be impaired under multiple stressors, even when taxonomic structure remains stable.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"60"},"PeriodicalIF":7.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008304/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple stressors affect function rather than taxonomic structure of freshwater microbial communities.\",\"authors\":\"Rose Fuggle, Miguel G Matias, Mariana Mayer-Pinto, Ezequiel M Marzinelli\",\"doi\":\"10.1038/s41522-025-00700-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial community responses to environmental stressors are often characterised by assessing changes in taxonomic structure, but such changes, or lack thereof, may not reflect functional changes that are critical to ecosystem processes. We investigated the individual and combined effects of nutrient enrichment ( + 10 mg/L N, + 1 mg/L P) and salinisation ( + 15 g/L NaCl)-key stressors in freshwater systems-on the taxonomic structure and metabolic function of benthic microbial communities using 1000 L open freshwater ponds established >10 years ago in the field. Combined stressors drove strong decreases in maximum and mean total carbon metabolic rates and shifted carbon metabolic profiles compared to either stressor individually and compared to ambient conditions. These metabolic functional changes did not recover through time and occurred without significant alterations in bacterial community taxonomic structure. These results imply that critical functions, including organic carbon release, are likely to be impaired under multiple stressors, even when taxonomic structure remains stable.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"60\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008304/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00700-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00700-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multiple stressors affect function rather than taxonomic structure of freshwater microbial communities.
Microbial community responses to environmental stressors are often characterised by assessing changes in taxonomic structure, but such changes, or lack thereof, may not reflect functional changes that are critical to ecosystem processes. We investigated the individual and combined effects of nutrient enrichment ( + 10 mg/L N, + 1 mg/L P) and salinisation ( + 15 g/L NaCl)-key stressors in freshwater systems-on the taxonomic structure and metabolic function of benthic microbial communities using 1000 L open freshwater ponds established >10 years ago in the field. Combined stressors drove strong decreases in maximum and mean total carbon metabolic rates and shifted carbon metabolic profiles compared to either stressor individually and compared to ambient conditions. These metabolic functional changes did not recover through time and occurred without significant alterations in bacterial community taxonomic structure. These results imply that critical functions, including organic carbon release, are likely to be impaired under multiple stressors, even when taxonomic structure remains stable.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.