约束效应对两亲性类醌两性离子在液固界面的自组装行为。

IF 1.5 4区 工程技术 Q3 MICROSCOPY
Lihua Yu, Yuan Fang, Steven De Feyter
{"title":"约束效应对两亲性类醌两性离子在液固界面的自组装行为。","authors":"Lihua Yu, Yuan Fang, Steven De Feyter","doi":"10.1111/jmi.13421","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular self-assembly on surfaces enables tailored interfaces with applications in nanotechnology. While factors like temperature and solute concentration influence self-assembled molecular networks (SAMNs), the role of spatial confinement remains less explored. Here, we investigate the self-assembly of an alkylated quinonoid zwitterion (QZ-C16) at the liquid-solid interface using scanning tunnelling microscopy (STM), both in in situ as well as ex situ nanocorrals. Engineered nanocorrals not only provide a confined environment for molecular assembly, but also serve as platforms for probing the impact of geometric constraints on self-assembly behaviour. Understanding the intricate dynamics of self-assembly at the nanoscale, particularly the mechanisms by which confinement influences structural organisation, can inform strategies for achieving desired molecular architectures.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confinement effects on the self-assembly behaviour of an amphiphilic quinonoid zwitterion at the liquid-solid interface.\",\"authors\":\"Lihua Yu, Yuan Fang, Steven De Feyter\",\"doi\":\"10.1111/jmi.13421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Supramolecular self-assembly on surfaces enables tailored interfaces with applications in nanotechnology. While factors like temperature and solute concentration influence self-assembled molecular networks (SAMNs), the role of spatial confinement remains less explored. Here, we investigate the self-assembly of an alkylated quinonoid zwitterion (QZ-C16) at the liquid-solid interface using scanning tunnelling microscopy (STM), both in in situ as well as ex situ nanocorrals. Engineered nanocorrals not only provide a confined environment for molecular assembly, but also serve as platforms for probing the impact of geometric constraints on self-assembly behaviour. Understanding the intricate dynamics of self-assembly at the nanoscale, particularly the mechanisms by which confinement influences structural organisation, can inform strategies for achieving desired molecular architectures.</p>\",\"PeriodicalId\":16484,\"journal\":{\"name\":\"Journal of microscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/jmi.13421\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13421","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

表面上的超分子自组装使纳米技术应用的定制界面成为可能。虽然温度和溶质浓度等因素会影响自组装分子网络(SAMNs),但空间约束的作用仍然很少被探索。在这里,我们使用扫描隧道显微镜(STM)研究了烷基化醌两性离子(QZ-C16)在液固界面的自组装,包括原位和非原位纳米圈。工程纳米围栏不仅为分子组装提供了一个受限的环境,而且还作为探索几何约束对自组装行为影响的平台。了解纳米尺度上自组装的复杂动力学,特别是约束影响结构组织的机制,可以为实现所需分子结构的策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confinement effects on the self-assembly behaviour of an amphiphilic quinonoid zwitterion at the liquid-solid interface.

Supramolecular self-assembly on surfaces enables tailored interfaces with applications in nanotechnology. While factors like temperature and solute concentration influence self-assembled molecular networks (SAMNs), the role of spatial confinement remains less explored. Here, we investigate the self-assembly of an alkylated quinonoid zwitterion (QZ-C16) at the liquid-solid interface using scanning tunnelling microscopy (STM), both in in situ as well as ex situ nanocorrals. Engineered nanocorrals not only provide a confined environment for molecular assembly, but also serve as platforms for probing the impact of geometric constraints on self-assembly behaviour. Understanding the intricate dynamics of self-assembly at the nanoscale, particularly the mechanisms by which confinement influences structural organisation, can inform strategies for achieving desired molecular architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信