Amalia Papanikolaou, David Graykowski, Byung Il Lee, Mengke Yang, Robert Ellingford, Jana Zünkler, Suraya A Bond, James M Rowland, Rikesh M Rajani, Samuel S Harris, David J Sharp, Marc Aurel Busche
{"title":"阿尔茨海默病模型中深部皮质层5/6快速尖峰中间神经元的选择性易损","authors":"Amalia Papanikolaou, David Graykowski, Byung Il Lee, Mengke Yang, Robert Ellingford, Jana Zünkler, Suraya A Bond, James M Rowland, Rikesh M Rajani, Samuel S Harris, David J Sharp, Marc Aurel Busche","doi":"10.1016/j.neuron.2025.04.010","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is initiated by amyloid-beta (Aβ) accumulation in the neocortex; however, the cortical layers and neuronal cell types first susceptible to Aβ remain unknown. Using in vivo two-photon Ca<sup>2+</sup> imaging in the visual cortex of AD mouse models, we found that cortical layer 5 neurons displayed abnormally prolonged Ca<sup>2+</sup> transients before substantial plaque formation. Neuropixels recordings revealed that these abnormal transients were associated with reduced spiking and impaired visual tuning of parvalbumin (PV)-positive fast-spiking interneurons (FSIs) in layers 5/6, whereas PV-FSIs in superficial layers remained unaffected. These dysfunctions occurred alongside a deep-layer-specific reduction in neuronal pentraxin 2 (NPTX2) within excitatory neurons, decreased GluA4 in PV-FSIs, and fewer excitatory synapses onto PV-FSIs. Notably, NPTX2 overexpression increased excitatory input onto layers 5/6 PV-FSIs and rectified their spiking activity. Thus, our findings reveal an early selective impairment of deep cortical layers 5/6 in AD models and identify deep-layer PV-FSIs as therapeutic targets.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selectively vulnerable deep cortical layer 5/6 fast-spiking interneurons in Alzheimer's disease models in vivo.\",\"authors\":\"Amalia Papanikolaou, David Graykowski, Byung Il Lee, Mengke Yang, Robert Ellingford, Jana Zünkler, Suraya A Bond, James M Rowland, Rikesh M Rajani, Samuel S Harris, David J Sharp, Marc Aurel Busche\",\"doi\":\"10.1016/j.neuron.2025.04.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is initiated by amyloid-beta (Aβ) accumulation in the neocortex; however, the cortical layers and neuronal cell types first susceptible to Aβ remain unknown. Using in vivo two-photon Ca<sup>2+</sup> imaging in the visual cortex of AD mouse models, we found that cortical layer 5 neurons displayed abnormally prolonged Ca<sup>2+</sup> transients before substantial plaque formation. Neuropixels recordings revealed that these abnormal transients were associated with reduced spiking and impaired visual tuning of parvalbumin (PV)-positive fast-spiking interneurons (FSIs) in layers 5/6, whereas PV-FSIs in superficial layers remained unaffected. These dysfunctions occurred alongside a deep-layer-specific reduction in neuronal pentraxin 2 (NPTX2) within excitatory neurons, decreased GluA4 in PV-FSIs, and fewer excitatory synapses onto PV-FSIs. Notably, NPTX2 overexpression increased excitatory input onto layers 5/6 PV-FSIs and rectified their spiking activity. Thus, our findings reveal an early selective impairment of deep cortical layers 5/6 in AD models and identify deep-layer PV-FSIs as therapeutic targets.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.04.010\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.04.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Selectively vulnerable deep cortical layer 5/6 fast-spiking interneurons in Alzheimer's disease models in vivo.
Alzheimer's disease (AD) is initiated by amyloid-beta (Aβ) accumulation in the neocortex; however, the cortical layers and neuronal cell types first susceptible to Aβ remain unknown. Using in vivo two-photon Ca2+ imaging in the visual cortex of AD mouse models, we found that cortical layer 5 neurons displayed abnormally prolonged Ca2+ transients before substantial plaque formation. Neuropixels recordings revealed that these abnormal transients were associated with reduced spiking and impaired visual tuning of parvalbumin (PV)-positive fast-spiking interneurons (FSIs) in layers 5/6, whereas PV-FSIs in superficial layers remained unaffected. These dysfunctions occurred alongside a deep-layer-specific reduction in neuronal pentraxin 2 (NPTX2) within excitatory neurons, decreased GluA4 in PV-FSIs, and fewer excitatory synapses onto PV-FSIs. Notably, NPTX2 overexpression increased excitatory input onto layers 5/6 PV-FSIs and rectified their spiking activity. Thus, our findings reveal an early selective impairment of deep cortical layers 5/6 in AD models and identify deep-layer PV-FSIs as therapeutic targets.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.