Xiaohong Hu, Yuhong Gao, Yixuan Song, Xiaoqin Yang, Keyang Liu, Bin Luo, Yan Sun, Li Li
{"title":"床垫硬度对睡眠结构和PSG特征的影响。","authors":"Xiaohong Hu, Yuhong Gao, Yixuan Song, Xiaoqin Yang, Keyang Liu, Bin Luo, Yan Sun, Li Li","doi":"10.2147/NSS.S503222","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The influence of sleep environments on sleep quality is well-established; however, the specific role of mattress design remains underexplored. Existing studies focus primarily on ergonomic aspects, such as pressure relief and spinal support, yet lack conclusive evidence linking these features to improved sleep quality.</p><p><strong>Objective and methods: </strong>This study aimed to evaluate the effects of mattress firmness on sleep quality. Twelve participants with a moderate body mass index (BMI) were tested across three levels of mattress firmness: soft (32.6 HA), medium (64.6 HA), and firm (83.8 HA). Sleep architecture and neurophysiological activity were assessed using polysomnography (PSG), with EEG-derived features, including power spectral characteristics, sleep spindle activity, and slow-wave parameters, further analyzed.</p><p><strong>Results: </strong>Our findings indicate that a medium-firm mattress provides better sleep quality, reflected in a narrower range (Range=xmax-xmin) of sleep duration, efficiency, and sleep latency, as well as increased sleep spindle activity. A repeated-measures ANOVA revealed a significant effect of mattress type on sleep latency (p < 0.05, partial η²=0.26), with sleep latency being longer on the soft mattress (12.42 ± 1.94 min) than the medium mattress (7.71 ± 1.31 min, p < 0.05). Another repeated-measures ANOVA showed significant differences in stage transitions (p < 0.05, partial η²=0.32), with more transitions on the soft mattress (29.17 ± 2.35) compared to the firm mattress (21.75 ± 2.13, p < 0.05). The firm mattress yielded mixed results, suggesting suitability for some individuals but not universally. Post-sleep vigilance differences were not statistically significant.</p><p><strong>Conclusion: </strong>This study provides evidence that mattress firmness significantly influences sleep quality, with medium firmness offering optimal outcomes for individuals with a moderate BMI. The findings contribute to the development of scientifically informed mattress designs, including smart mattresses aimed at improving sleep quality.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"865-878"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071755/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effect of Mattress Firmness on Sleep Architecture and PSG Characteristics.\",\"authors\":\"Xiaohong Hu, Yuhong Gao, Yixuan Song, Xiaoqin Yang, Keyang Liu, Bin Luo, Yan Sun, Li Li\",\"doi\":\"10.2147/NSS.S503222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The influence of sleep environments on sleep quality is well-established; however, the specific role of mattress design remains underexplored. Existing studies focus primarily on ergonomic aspects, such as pressure relief and spinal support, yet lack conclusive evidence linking these features to improved sleep quality.</p><p><strong>Objective and methods: </strong>This study aimed to evaluate the effects of mattress firmness on sleep quality. Twelve participants with a moderate body mass index (BMI) were tested across three levels of mattress firmness: soft (32.6 HA), medium (64.6 HA), and firm (83.8 HA). Sleep architecture and neurophysiological activity were assessed using polysomnography (PSG), with EEG-derived features, including power spectral characteristics, sleep spindle activity, and slow-wave parameters, further analyzed.</p><p><strong>Results: </strong>Our findings indicate that a medium-firm mattress provides better sleep quality, reflected in a narrower range (Range=xmax-xmin) of sleep duration, efficiency, and sleep latency, as well as increased sleep spindle activity. A repeated-measures ANOVA revealed a significant effect of mattress type on sleep latency (p < 0.05, partial η²=0.26), with sleep latency being longer on the soft mattress (12.42 ± 1.94 min) than the medium mattress (7.71 ± 1.31 min, p < 0.05). Another repeated-measures ANOVA showed significant differences in stage transitions (p < 0.05, partial η²=0.32), with more transitions on the soft mattress (29.17 ± 2.35) compared to the firm mattress (21.75 ± 2.13, p < 0.05). The firm mattress yielded mixed results, suggesting suitability for some individuals but not universally. Post-sleep vigilance differences were not statistically significant.</p><p><strong>Conclusion: </strong>This study provides evidence that mattress firmness significantly influences sleep quality, with medium firmness offering optimal outcomes for individuals with a moderate BMI. The findings contribute to the development of scientifically informed mattress designs, including smart mattresses aimed at improving sleep quality.</p>\",\"PeriodicalId\":18896,\"journal\":{\"name\":\"Nature and Science of Sleep\",\"volume\":\"17 \",\"pages\":\"865-878\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature and Science of Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/NSS.S503222\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S503222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The Effect of Mattress Firmness on Sleep Architecture and PSG Characteristics.
Background: The influence of sleep environments on sleep quality is well-established; however, the specific role of mattress design remains underexplored. Existing studies focus primarily on ergonomic aspects, such as pressure relief and spinal support, yet lack conclusive evidence linking these features to improved sleep quality.
Objective and methods: This study aimed to evaluate the effects of mattress firmness on sleep quality. Twelve participants with a moderate body mass index (BMI) were tested across three levels of mattress firmness: soft (32.6 HA), medium (64.6 HA), and firm (83.8 HA). Sleep architecture and neurophysiological activity were assessed using polysomnography (PSG), with EEG-derived features, including power spectral characteristics, sleep spindle activity, and slow-wave parameters, further analyzed.
Results: Our findings indicate that a medium-firm mattress provides better sleep quality, reflected in a narrower range (Range=xmax-xmin) of sleep duration, efficiency, and sleep latency, as well as increased sleep spindle activity. A repeated-measures ANOVA revealed a significant effect of mattress type on sleep latency (p < 0.05, partial η²=0.26), with sleep latency being longer on the soft mattress (12.42 ± 1.94 min) than the medium mattress (7.71 ± 1.31 min, p < 0.05). Another repeated-measures ANOVA showed significant differences in stage transitions (p < 0.05, partial η²=0.32), with more transitions on the soft mattress (29.17 ± 2.35) compared to the firm mattress (21.75 ± 2.13, p < 0.05). The firm mattress yielded mixed results, suggesting suitability for some individuals but not universally. Post-sleep vigilance differences were not statistically significant.
Conclusion: This study provides evidence that mattress firmness significantly influences sleep quality, with medium firmness offering optimal outcomes for individuals with a moderate BMI. The findings contribute to the development of scientifically informed mattress designs, including smart mattresses aimed at improving sleep quality.
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.