基于深度学习的高效息肉检测算法。

IF 1.7 4区 医学 Q3 GASTROENTEROLOGY & HEPATOLOGY
Xing Sun, Jingang Ma, Yang Li
{"title":"基于深度学习的高效息肉检测算法。","authors":"Xing Sun, Jingang Ma, Yang Li","doi":"10.1080/00365521.2025.2503297","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Colon polyp detection is crucial in reducing the incidence of colorectal cancer. However, due to the diverse morphology of colon polyps, their high similarity to surrounding tissues, and the difficulty of detecting small target polyps, false negatives and false positives are common problems.</p><p><strong>Methods: </strong>To address this, we propose a lightweight and efficient colon polyp detection model based on YOLOv10, a deep learning-based object detection method-EP-YOLO (Efficient for Polyp). By introducing the GBottleneck module, we reduce the number of parameters and accelerate inference; a lightweight GHead detection head and an additional small target detection layer are designed to enhance small target recognition ability; we propose the SE_SPPF module to improve attention on polyps while suppressing background noise interference; the loss function is replaced with Wise-IoU to optimize gradient distribution and improve generalization ability.</p><p><strong>Results: </strong>Experimental results on the publicly available LDPolypVideo (7,681 images), Kvasir-SEG (1,000 images) and CVC-ClinicDB (612 images) datasets show that EP-YOLO achieves precision scores of 94.17%, 94.32% and 93.21%, respectively, representing improvements of 2.10%, 2.05% and 1.42% over the baseline algorithm, while reducing the number of parameters by 16%.</p><p><strong>Conclusion: </strong>Compared with other mainstream object detection methods, EP-YOLO demonstrates significant advantages in accuracy, computational load and FPS, making it more suitable for practical medical scenarios in colon polyp detection.</p>","PeriodicalId":21461,"journal":{"name":"Scandinavian Journal of Gastroenterology","volume":" ","pages":"502-515"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient polyp detection algorithm based on deep learning.\",\"authors\":\"Xing Sun, Jingang Ma, Yang Li\",\"doi\":\"10.1080/00365521.2025.2503297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Colon polyp detection is crucial in reducing the incidence of colorectal cancer. However, due to the diverse morphology of colon polyps, their high similarity to surrounding tissues, and the difficulty of detecting small target polyps, false negatives and false positives are common problems.</p><p><strong>Methods: </strong>To address this, we propose a lightweight and efficient colon polyp detection model based on YOLOv10, a deep learning-based object detection method-EP-YOLO (Efficient for Polyp). By introducing the GBottleneck module, we reduce the number of parameters and accelerate inference; a lightweight GHead detection head and an additional small target detection layer are designed to enhance small target recognition ability; we propose the SE_SPPF module to improve attention on polyps while suppressing background noise interference; the loss function is replaced with Wise-IoU to optimize gradient distribution and improve generalization ability.</p><p><strong>Results: </strong>Experimental results on the publicly available LDPolypVideo (7,681 images), Kvasir-SEG (1,000 images) and CVC-ClinicDB (612 images) datasets show that EP-YOLO achieves precision scores of 94.17%, 94.32% and 93.21%, respectively, representing improvements of 2.10%, 2.05% and 1.42% over the baseline algorithm, while reducing the number of parameters by 16%.</p><p><strong>Conclusion: </strong>Compared with other mainstream object detection methods, EP-YOLO demonstrates significant advantages in accuracy, computational load and FPS, making it more suitable for practical medical scenarios in colon polyp detection.</p>\",\"PeriodicalId\":21461,\"journal\":{\"name\":\"Scandinavian Journal of Gastroenterology\",\"volume\":\" \",\"pages\":\"502-515\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Gastroenterology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00365521.2025.2503297\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00365521.2025.2503297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:结肠息肉检测是降低结直肠癌发病率的重要手段。然而,由于结肠息肉形态多样,与周围组织高度相似,且小靶点息肉不易检测,因此假阴性、假阳性是常见问题。方法:为了解决这个问题,我们提出了一种基于YOLOv10的轻量级高效的结肠息肉检测模型,一种基于深度学习的目标检测方法- ep - yolo (efficient for polyp)。通过引入GBottleneck模块,减少了参数的数量,加快了推理速度;设计轻量级GHead检测头和附加小目标检测层,增强小目标识别能力;我们提出了SE_SPPF模块,在抑制背景噪声干扰的同时提高对息肉的关注;用Wise-IoU代替损失函数,优化梯度分布,提高泛化能力。结果:在公开的LDPolypVideo(7681张图像)、Kvasir-SEG(1000张图像)和CVC-ClinicDB(612张图像)数据集上的实验结果表明,EP-YOLO的精度分数分别为94.17%、94.32%和93.21%,比基线算法提高了2.10%、2.05%和1.42%,参数数量减少了16%。结论:与其他主流目标检测方法相比,EP-YOLO在准确率、计算量和FPS方面具有显著优势,更适合实际医疗场景中结肠息肉的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient polyp detection algorithm based on deep learning.

Objective: Colon polyp detection is crucial in reducing the incidence of colorectal cancer. However, due to the diverse morphology of colon polyps, their high similarity to surrounding tissues, and the difficulty of detecting small target polyps, false negatives and false positives are common problems.

Methods: To address this, we propose a lightweight and efficient colon polyp detection model based on YOLOv10, a deep learning-based object detection method-EP-YOLO (Efficient for Polyp). By introducing the GBottleneck module, we reduce the number of parameters and accelerate inference; a lightweight GHead detection head and an additional small target detection layer are designed to enhance small target recognition ability; we propose the SE_SPPF module to improve attention on polyps while suppressing background noise interference; the loss function is replaced with Wise-IoU to optimize gradient distribution and improve generalization ability.

Results: Experimental results on the publicly available LDPolypVideo (7,681 images), Kvasir-SEG (1,000 images) and CVC-ClinicDB (612 images) datasets show that EP-YOLO achieves precision scores of 94.17%, 94.32% and 93.21%, respectively, representing improvements of 2.10%, 2.05% and 1.42% over the baseline algorithm, while reducing the number of parameters by 16%.

Conclusion: Compared with other mainstream object detection methods, EP-YOLO demonstrates significant advantages in accuracy, computational load and FPS, making it more suitable for practical medical scenarios in colon polyp detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.30%
发文量
222
审稿时长
3-8 weeks
期刊介绍: The Scandinavian Journal of Gastroenterology is one of the most important journals for international medical research in gastroenterology and hepatology with international contributors, Editorial Board, and distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信