使用共享潜在变量模型评估阿尔茨海默病生物标志物的概率聚类。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yizhen Xu, Scott Zeger, Zheyu Wang
{"title":"使用共享潜在变量模型评估阿尔茨海默病生物标志物的概率聚类。","authors":"Yizhen Xu, Scott Zeger, Zheyu Wang","doi":"10.1093/biostatistics/kxaf010","DOIUrl":null,"url":null,"abstract":"<p><p>The preclinical stage of many neurodegenerative diseases can span decades before symptoms become apparent. Understanding the sequence of preclinical biomarker changes provides a critical opportunity for early diagnosis and effective intervention prior to significant loss of patients' brain functions. The main challenge to early detection lies in the absence of direct observation of the disease state and the considerable variability in both biomarkers and disease dynamics among individuals. Recent research hypothesized the existence of subgroups with distinct biomarker patterns due to co-morbidities and degrees of brain resilience. Our ability to diagnose early and intervene during the preclinical stage of neurodegenerative diseases will be enhanced by further insights into heterogeneity in the biomarker-disease relationship. In this article, we focus on Alzheimer's disease (AD) and attempt to identify the systematic patterns within the heterogeneous AD biomarker-disease cascade. Specifically, we quantify the disease progression using a dynamic latent variable whose mixture distribution represents patient subgroups. Model estimation uses Hamiltonian Monte Carlo with the number of clusters determined by the Bayesian Information Criterion. We report simulation studies that investigate the performance of the proposed model in finite sample settings that are similar to our motivating application. We apply the proposed model to the Biomarkers of Cognitive Decline Among Normal Individuals data, a longitudinal study that was conducted over 2 decades among individuals who were initially cognitively normal. Our application yields evidence consistent with the hypothetical model of biomarker dynamics presented in Jack Jr et al. In addition, our analysis identified 2 subgroups with distinct disease-onset patterns. Finally, we develop a dynamic prediction approach to improve the precision of prognoses.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic clustering using shared latent variable model for assessing Alzheimer's disease biomarkers.\",\"authors\":\"Yizhen Xu, Scott Zeger, Zheyu Wang\",\"doi\":\"10.1093/biostatistics/kxaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The preclinical stage of many neurodegenerative diseases can span decades before symptoms become apparent. Understanding the sequence of preclinical biomarker changes provides a critical opportunity for early diagnosis and effective intervention prior to significant loss of patients' brain functions. The main challenge to early detection lies in the absence of direct observation of the disease state and the considerable variability in both biomarkers and disease dynamics among individuals. Recent research hypothesized the existence of subgroups with distinct biomarker patterns due to co-morbidities and degrees of brain resilience. Our ability to diagnose early and intervene during the preclinical stage of neurodegenerative diseases will be enhanced by further insights into heterogeneity in the biomarker-disease relationship. In this article, we focus on Alzheimer's disease (AD) and attempt to identify the systematic patterns within the heterogeneous AD biomarker-disease cascade. Specifically, we quantify the disease progression using a dynamic latent variable whose mixture distribution represents patient subgroups. Model estimation uses Hamiltonian Monte Carlo with the number of clusters determined by the Bayesian Information Criterion. We report simulation studies that investigate the performance of the proposed model in finite sample settings that are similar to our motivating application. We apply the proposed model to the Biomarkers of Cognitive Decline Among Normal Individuals data, a longitudinal study that was conducted over 2 decades among individuals who were initially cognitively normal. Our application yields evidence consistent with the hypothetical model of biomarker dynamics presented in Jack Jr et al. In addition, our analysis identified 2 subgroups with distinct disease-onset patterns. Finally, we develop a dynamic prediction approach to improve the precision of prognoses.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12054513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf010\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多神经退行性疾病的临床前阶段在症状变得明显之前可以跨越几十年。了解临床前生物标志物变化的顺序为早期诊断和有效干预提供了重要的机会,以便在患者脑功能显著丧失之前进行干预。早期检测的主要挑战在于缺乏对疾病状态的直接观察,以及个体之间生物标志物和疾病动态的相当大的差异。最近的研究假设存在具有不同生物标志物模式的亚群,由于合并症和大脑恢复能力的程度。通过进一步了解生物标志物与疾病关系的异质性,我们在神经退行性疾病的临床前阶段进行早期诊断和干预的能力将得到增强。在本文中,我们关注阿尔茨海默病(AD),并试图确定异质性AD生物标志物-疾病级联中的系统模式。具体来说,我们使用一个动态潜在变量来量化疾病进展,该变量的混合分布代表了患者亚组。模型估计采用哈密顿蒙特卡罗方法,聚类数量由贝叶斯信息准则确定。我们报告了模拟研究,研究了所提出的模型在有限样本设置中的性能,类似于我们的激励应用程序。我们将提出的模型应用于正常个体认知衰退的生物标志物数据,这是一项纵向研究,在最初认知正常的个体中进行了20多年。我们的应用产生了与Jack Jr等人提出的生物标志物动力学假设模型一致的证据。此外,我们的分析确定了2个具有不同发病模式的亚组。最后,我们开发了一种动态预测方法来提高预测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic clustering using shared latent variable model for assessing Alzheimer's disease biomarkers.

The preclinical stage of many neurodegenerative diseases can span decades before symptoms become apparent. Understanding the sequence of preclinical biomarker changes provides a critical opportunity for early diagnosis and effective intervention prior to significant loss of patients' brain functions. The main challenge to early detection lies in the absence of direct observation of the disease state and the considerable variability in both biomarkers and disease dynamics among individuals. Recent research hypothesized the existence of subgroups with distinct biomarker patterns due to co-morbidities and degrees of brain resilience. Our ability to diagnose early and intervene during the preclinical stage of neurodegenerative diseases will be enhanced by further insights into heterogeneity in the biomarker-disease relationship. In this article, we focus on Alzheimer's disease (AD) and attempt to identify the systematic patterns within the heterogeneous AD biomarker-disease cascade. Specifically, we quantify the disease progression using a dynamic latent variable whose mixture distribution represents patient subgroups. Model estimation uses Hamiltonian Monte Carlo with the number of clusters determined by the Bayesian Information Criterion. We report simulation studies that investigate the performance of the proposed model in finite sample settings that are similar to our motivating application. We apply the proposed model to the Biomarkers of Cognitive Decline Among Normal Individuals data, a longitudinal study that was conducted over 2 decades among individuals who were initially cognitively normal. Our application yields evidence consistent with the hypothetical model of biomarker dynamics presented in Jack Jr et al. In addition, our analysis identified 2 subgroups with distinct disease-onset patterns. Finally, we develop a dynamic prediction approach to improve the precision of prognoses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信