明亮的量子点光源使用单片微透镜在黄金背反射器上。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Moritz Langer, Sai A Dhurjati, Yared G Zena, Ahmad Rahimi, Mandira Pal, Liesa Raith, Sandra Nestler, Riccardo Bassoli, Frank H P Fitzek, Oliver G Schmidt, Caspar Hopfmann
{"title":"明亮的量子点光源使用单片微透镜在黄金背反射器上。","authors":"Moritz Langer, Sai A Dhurjati, Yared G Zena, Ahmad Rahimi, Mandira Pal, Liesa Raith, Sandra Nestler, Riccardo Bassoli, Frank H P Fitzek, Oliver G Schmidt, Caspar Hopfmann","doi":"10.1088/1361-6528/add350","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate a scalable method for fabricating bright GaAs quantum dot (QD) photon sources by embedding them into broadband monolithic AlGaAs microlens arrays on gold-coated GaAs substrates. Cylindrical photoresist templates (2-5 <i>µ</i>m diameter) are thermally reflowed and transferred into AlGaAs thin films using an optimized 3D reactive ion etching process. This yields large-area (2 mm × 4 mm), high-density (∼40×103 mm<sup>-2</sup>) microlens arrays of uniform shape. The brightest QD emissions are found in lenses with 2.7 <i>µ</i>m diameter and 1.35 <i>µ</i>m height. Finite-difference time-domain simulations of lens geometries reveal optimization potentials, including anti-reflection coatings. It is found that free-space and fiber-coupled extraction efficiencies can reach up to 62% and 37%, respectively. A statistical fabrication model, validated through photoluminescence spectroscopy, shows intensity enhancements up to × 200 in ca. 1 out of 200 lenses, aligning well with theoretical predictions. This approach highlights the promise of compact, efficient photon sources for future large-scale quantum network applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":"36 22","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bright quantum dot light sources using monolithic microlenses on gold back-reflectors.\",\"authors\":\"Moritz Langer, Sai A Dhurjati, Yared G Zena, Ahmad Rahimi, Mandira Pal, Liesa Raith, Sandra Nestler, Riccardo Bassoli, Frank H P Fitzek, Oliver G Schmidt, Caspar Hopfmann\",\"doi\":\"10.1088/1361-6528/add350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate a scalable method for fabricating bright GaAs quantum dot (QD) photon sources by embedding them into broadband monolithic AlGaAs microlens arrays on gold-coated GaAs substrates. Cylindrical photoresist templates (2-5 <i>µ</i>m diameter) are thermally reflowed and transferred into AlGaAs thin films using an optimized 3D reactive ion etching process. This yields large-area (2 mm × 4 mm), high-density (∼40×103 mm<sup>-2</sup>) microlens arrays of uniform shape. The brightest QD emissions are found in lenses with 2.7 <i>µ</i>m diameter and 1.35 <i>µ</i>m height. Finite-difference time-domain simulations of lens geometries reveal optimization potentials, including anti-reflection coatings. It is found that free-space and fiber-coupled extraction efficiencies can reach up to 62% and 37%, respectively. A statistical fabrication model, validated through photoluminescence spectroscopy, shows intensity enhancements up to × 200 in ca. 1 out of 200 lenses, aligning well with theoretical predictions. This approach highlights the promise of compact, efficient photon sources for future large-scale quantum network applications.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\"36 22\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/add350\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/add350","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种可扩展的方法来制造明亮的GaAs量子点(QD)光子源,通过将它们嵌入到镀金GaAs衬底上的宽带单片AlGaAs微透镜阵列中。圆柱形光刻胶模板(直径2-5µm)热回流并使用优化的3D反应离子蚀刻工艺转移到AlGaAs薄膜中。这产生了均匀形状的大面积(2mm × 4mm)、高密度(~ 40×103 mm-2)微透镜阵列。最亮的量子点辐射出现在直径2.7µm,高度1.35µm的透镜中。透镜几何的有限差分时域模拟揭示了优化潜力,包括抗反射涂层。自由空间和纤维耦合萃取效率分别可达62%和37%。通过光致发光光谱验证的统计制造模型显示,200个透镜中约有1个透镜的强度提高了200倍,与理论预测很好地吻合。这种方法强调了未来大规模量子网络应用中紧凑、高效的光子源的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bright quantum dot light sources using monolithic microlenses on gold back-reflectors.

We demonstrate a scalable method for fabricating bright GaAs quantum dot (QD) photon sources by embedding them into broadband monolithic AlGaAs microlens arrays on gold-coated GaAs substrates. Cylindrical photoresist templates (2-5 µm diameter) are thermally reflowed and transferred into AlGaAs thin films using an optimized 3D reactive ion etching process. This yields large-area (2 mm × 4 mm), high-density (∼40×103 mm-2) microlens arrays of uniform shape. The brightest QD emissions are found in lenses with 2.7 µm diameter and 1.35 µm height. Finite-difference time-domain simulations of lens geometries reveal optimization potentials, including anti-reflection coatings. It is found that free-space and fiber-coupled extraction efficiencies can reach up to 62% and 37%, respectively. A statistical fabrication model, validated through photoluminescence spectroscopy, shows intensity enhancements up to × 200 in ca. 1 out of 200 lenses, aligning well with theoretical predictions. This approach highlights the promise of compact, efficient photon sources for future large-scale quantum network applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信