{"title":"数字光处理(DLP)生物打印的进展:生物材料及其应用、创新、挑战和未来展望","authors":"Cem Alparslan, Şenol Bayraktar","doi":"10.3390/polym17091287","DOIUrl":null,"url":null,"abstract":"<p><p>Digital light processing (DLP) technology stands out as a groundbreaking method in the field of biomedical engineering that enables the production of highly precise structures using photopolymerizable materials. Smart materials such as shape memory polymers, hydrogels, and nanocomposites are used as ideal materials for personalized medicine applications thanks to their properties such as superior mechanical strength, biocompatibility, and sensitivity to environmental stimuli in DLP technology. The integration of these materials with DLP enables the production of functional and complex structures, especially in areas such as bone and soft tissue engineering, drug delivery, and biosensor production. However, limited material diversity, scalability problems in production processes, and technical difficulties in optimizing bioprinting parameters are among the main obstacles in this field. This study systematically examines the role of smart biomaterials in DLP-based bioprinting processes. It addresses the innovative applications of these materials in tissue engineering and regenerative medicine. It also comprehensively evaluates its contributions to biomedical applications and discusses future research areas to overcome current limitations.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives.\",\"authors\":\"Cem Alparslan, Şenol Bayraktar\",\"doi\":\"10.3390/polym17091287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital light processing (DLP) technology stands out as a groundbreaking method in the field of biomedical engineering that enables the production of highly precise structures using photopolymerizable materials. Smart materials such as shape memory polymers, hydrogels, and nanocomposites are used as ideal materials for personalized medicine applications thanks to their properties such as superior mechanical strength, biocompatibility, and sensitivity to environmental stimuli in DLP technology. The integration of these materials with DLP enables the production of functional and complex structures, especially in areas such as bone and soft tissue engineering, drug delivery, and biosensor production. However, limited material diversity, scalability problems in production processes, and technical difficulties in optimizing bioprinting parameters are among the main obstacles in this field. This study systematically examines the role of smart biomaterials in DLP-based bioprinting processes. It addresses the innovative applications of these materials in tissue engineering and regenerative medicine. It also comprehensively evaluates its contributions to biomedical applications and discusses future research areas to overcome current limitations.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091287\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091287","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives.
Digital light processing (DLP) technology stands out as a groundbreaking method in the field of biomedical engineering that enables the production of highly precise structures using photopolymerizable materials. Smart materials such as shape memory polymers, hydrogels, and nanocomposites are used as ideal materials for personalized medicine applications thanks to their properties such as superior mechanical strength, biocompatibility, and sensitivity to environmental stimuli in DLP technology. The integration of these materials with DLP enables the production of functional and complex structures, especially in areas such as bone and soft tissue engineering, drug delivery, and biosensor production. However, limited material diversity, scalability problems in production processes, and technical difficulties in optimizing bioprinting parameters are among the main obstacles in this field. This study systematically examines the role of smart biomaterials in DLP-based bioprinting processes. It addresses the innovative applications of these materials in tissue engineering and regenerative medicine. It also comprehensively evaluates its contributions to biomedical applications and discusses future research areas to overcome current limitations.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.