Bo Fan, Shihao Du, Jingchuan Zhou, Zhenghao Lu, Dacheng Xu, Shuwen Guo, Yuyu Tan, Fang Chen
{"title":"具有扩展输入范围的抗混叠多比特σ - δ调制蛛网状圆盘谐振陀螺仪。","authors":"Bo Fan, Shihao Du, Jingchuan Zhou, Zhenghao Lu, Dacheng Xu, Shuwen Guo, Yuyu Tan, Fang Chen","doi":"10.1038/s41378-025-00919-1","DOIUrl":null,"url":null,"abstract":"<p><p>A novel cobweb-like disk resonator gyroscope (CDRG) is introduced in this paper, which integrates a multi-bit electro-mechanical sigma-delta modulation (ΣΔΜ) system to significantly expand the input angular rate signal range, improving performance metrics like signal-to-noise ratio (SNR) and noise reduction. This design seeks to overcome the limitations associated with single-bit ΣΔΜ gyroscope systems by incorporating a linear multi-bit force feedback mechanism that utilizes nonlinear actuators driven by pulse density modulation. The proposed gyroscope system effectively broadens the input range without necessitating higher actuation voltages. In the absence of electronic trimming, experimental findings indicate significant enhancements in performance metrics: the input range, angle random walk, and bias instability improved by 30%, 106.2%, and 487.9%, respectively, when compared to traditional ΣΔΜ CDRG system configurations.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"66"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-aliasing multi-bit sigma-delta modulated cobweb-like disk resonator gyroscope with extending input range.\",\"authors\":\"Bo Fan, Shihao Du, Jingchuan Zhou, Zhenghao Lu, Dacheng Xu, Shuwen Guo, Yuyu Tan, Fang Chen\",\"doi\":\"10.1038/s41378-025-00919-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel cobweb-like disk resonator gyroscope (CDRG) is introduced in this paper, which integrates a multi-bit electro-mechanical sigma-delta modulation (ΣΔΜ) system to significantly expand the input angular rate signal range, improving performance metrics like signal-to-noise ratio (SNR) and noise reduction. This design seeks to overcome the limitations associated with single-bit ΣΔΜ gyroscope systems by incorporating a linear multi-bit force feedback mechanism that utilizes nonlinear actuators driven by pulse density modulation. The proposed gyroscope system effectively broadens the input range without necessitating higher actuation voltages. In the absence of electronic trimming, experimental findings indicate significant enhancements in performance metrics: the input range, angle random walk, and bias instability improved by 30%, 106.2%, and 487.9%, respectively, when compared to traditional ΣΔΜ CDRG system configurations.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"11 1\",\"pages\":\"66\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-025-00919-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00919-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Anti-aliasing multi-bit sigma-delta modulated cobweb-like disk resonator gyroscope with extending input range.
A novel cobweb-like disk resonator gyroscope (CDRG) is introduced in this paper, which integrates a multi-bit electro-mechanical sigma-delta modulation (ΣΔΜ) system to significantly expand the input angular rate signal range, improving performance metrics like signal-to-noise ratio (SNR) and noise reduction. This design seeks to overcome the limitations associated with single-bit ΣΔΜ gyroscope systems by incorporating a linear multi-bit force feedback mechanism that utilizes nonlinear actuators driven by pulse density modulation. The proposed gyroscope system effectively broadens the input range without necessitating higher actuation voltages. In the absence of electronic trimming, experimental findings indicate significant enhancements in performance metrics: the input range, angle random walk, and bias instability improved by 30%, 106.2%, and 487.9%, respectively, when compared to traditional ΣΔΜ CDRG system configurations.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.