机翼伸屈耦合气动弹性效应提高了鸟类的滑翔性能。

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1098/rsif.2024.0753
Jasmin C M Wong, Vaibhav Joshi, Rajeev K Jaiman, Douglas L Altshuler
{"title":"机翼伸屈耦合气动弹性效应提高了鸟类的滑翔性能。","authors":"Jasmin C M Wong, Vaibhav Joshi, Rajeev K Jaiman, Douglas L Altshuler","doi":"10.1098/rsif.2024.0753","DOIUrl":null,"url":null,"abstract":"<p><p>During flight, birds instigate remarkably large changes in wing shape, commonly termed 'wing morphing'. These changes in shape, particularly extension-flexion, have been well documented to influence the production of aerodynamic forces. However, it is unknown how wing stiffness changes as a result of the structural rearrangements needed for morphing. We address this gap in knowledge through mechanical testing of <i>in situ</i> flight feathers in anaesthetized pigeons and found that while the most distal portion of the feathered wing remained unaffected, proximal areas saw an increase in out-of-plane stiffness due to wing folding. Following this, we used computational fluid-structure interaction simulations to evaluate how this morphing-coupled change in stiffness might modulate local flow patterns to affect aerodynamic performance. We found that flexible wings perform better than entirely rigid wings as an increase in near-wall vorticity delayed flow separation. Furthermore, an increase in stiffness in a folded wing during high-speed flight prevented the reduction in lift seen in more flexible cases caused by aeroelastic flutter modes destructively interfering with shed leading-edge vortices. Collectively, these results reveal that mechanical changes coupled with wing morphing can provide a speed-dependent mechanism to enhance flight performance.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 226","pages":"20240753"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055289/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wing extension-flexion coupled aeroelastic effects improve avian gliding performance.\",\"authors\":\"Jasmin C M Wong, Vaibhav Joshi, Rajeev K Jaiman, Douglas L Altshuler\",\"doi\":\"10.1098/rsif.2024.0753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During flight, birds instigate remarkably large changes in wing shape, commonly termed 'wing morphing'. These changes in shape, particularly extension-flexion, have been well documented to influence the production of aerodynamic forces. However, it is unknown how wing stiffness changes as a result of the structural rearrangements needed for morphing. We address this gap in knowledge through mechanical testing of <i>in situ</i> flight feathers in anaesthetized pigeons and found that while the most distal portion of the feathered wing remained unaffected, proximal areas saw an increase in out-of-plane stiffness due to wing folding. Following this, we used computational fluid-structure interaction simulations to evaluate how this morphing-coupled change in stiffness might modulate local flow patterns to affect aerodynamic performance. We found that flexible wings perform better than entirely rigid wings as an increase in near-wall vorticity delayed flow separation. Furthermore, an increase in stiffness in a folded wing during high-speed flight prevented the reduction in lift seen in more flexible cases caused by aeroelastic flutter modes destructively interfering with shed leading-edge vortices. Collectively, these results reveal that mechanical changes coupled with wing morphing can provide a speed-dependent mechanism to enhance flight performance.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 226\",\"pages\":\"20240753\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0753\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0753","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在飞行过程中,鸟类会引起翅膀形状的巨大变化,通常被称为“翅膀变形”。这些形状的变化,尤其是伸屈变化,已经被充分证明会影响空气动力的产生。然而,目前尚不清楚机翼的刚度是如何随着变形所需的结构重排而变化的。我们通过对麻醉鸽子的原位飞行羽毛进行机械测试来解决这一知识上的空白,并发现虽然羽毛翅膀的最远端部分没有受到影响,但由于翅膀折叠,近端区域的面外刚度增加。在此之后,我们使用计算流固耦合模拟来评估刚度的变形耦合变化如何调节局部流动模式从而影响气动性能。我们发现,当近壁涡度增加时,柔性翼比完全刚性翼表现得更好。此外,在高速飞行中,折叠翼刚度的增加防止了在更灵活的情况下由气动弹性颤振模式破坏性地干扰脱落前缘涡引起的升力下降。总的来说,这些结果表明,与机翼变形相结合的机械变化可以提供一种依赖于速度的机制来提高飞行性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wing extension-flexion coupled aeroelastic effects improve avian gliding performance.

During flight, birds instigate remarkably large changes in wing shape, commonly termed 'wing morphing'. These changes in shape, particularly extension-flexion, have been well documented to influence the production of aerodynamic forces. However, it is unknown how wing stiffness changes as a result of the structural rearrangements needed for morphing. We address this gap in knowledge through mechanical testing of in situ flight feathers in anaesthetized pigeons and found that while the most distal portion of the feathered wing remained unaffected, proximal areas saw an increase in out-of-plane stiffness due to wing folding. Following this, we used computational fluid-structure interaction simulations to evaluate how this morphing-coupled change in stiffness might modulate local flow patterns to affect aerodynamic performance. We found that flexible wings perform better than entirely rigid wings as an increase in near-wall vorticity delayed flow separation. Furthermore, an increase in stiffness in a folded wing during high-speed flight prevented the reduction in lift seen in more flexible cases caused by aeroelastic flutter modes destructively interfering with shed leading-edge vortices. Collectively, these results reveal that mechanical changes coupled with wing morphing can provide a speed-dependent mechanism to enhance flight performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信