新发现的昆虫病原线虫adamsteinerma对玉米helicopa的抗性:生活期敏感性、紫外线耐受性和田间表现。

IF 1.4 4区 生物学 Q2 ZOOLOGY
Journal of nematology Pub Date : 2025-04-24 eCollection Date: 2025-02-01 DOI:10.2478/jofnem-2025-0012
James Paul Glover, Nathan Spaulding, Justin George, Maribel Portilla, Gadi V P Reddy, Adler Dillman
{"title":"新发现的昆虫病原线虫adamsteinerma对玉米helicopa的抗性:生活期敏感性、紫外线耐受性和田间表现。","authors":"James Paul Glover, Nathan Spaulding, Justin George, Maribel Portilla, Gadi V P Reddy, Adler Dillman","doi":"10.2478/jofnem-2025-0012","DOIUrl":null,"url":null,"abstract":"<p><p><i>Helicoverpa zea</i> is a major agricultural pest, particularly in cotton, and poses significant challenges due to its ability to develop resistance to chemical insecticides. This study evaluates the efficacy of the entomopathogenic nematode (<i>Steinernema adamsi</i>) and its mutualistic bacteria (<i>Xenorhabdus</i>) as biological control agents against <i>H. zea</i> larvae in both laboratory and field settings. In laboratory assays, mortality rates for 1<sup>st</sup> to 4<sup>th</sup> instars were high, ranging from 74.2% to 100%, while 5<sup>th</sup> instars exhibited significantly lower susceptibility (<37% mortality). Pupae were completely resistant to nematode infection. The impact of UV radiation on nematode efficacy was assessed, with mortality decreasing from 100% in control conditions (0 hours of UV exposure) to 71.8% after 5 hours of UV exposure, highlighting the vulnerability of <i>S. adamsi</i> to UV degradation. In addition, <i>Xenorhabdus</i> caused 100% mortality in <i>H. zea</i> larvae when injected directly into the hemocoel, but oral toxicity was significantly lower, with 36% mortality in 7 days post-exposure. Field experiments demonstrated that the combination of <i>S. adamsi</i> with 0.05% sodium alginate (hygroscopic agent) and 0.02% Congo red (UV protectant) resulted in a significant increase in larval mortality. In field test A, where <i>S. adamsi</i> was applied in water, mortality averaged 56% with 82% EPN infection. In field test B, the combined treatment of sodium alginate and Congo red led to 98% larval mortality, although infection rates were lower and statistically non-significant. The addition of these protective agents likely enhanced the environmental stability and efficacy of the nematodes under field conditions. These findings suggest that <i>S. adamsi</i> can be an effective biological control agent for <i>H. zea</i>, particularly when combined with formulations that protect against UV radiation and desiccation. Future research should focus on optimizing nematode delivery systems to improve field efficacy under diverse environmental conditions.</p>","PeriodicalId":16475,"journal":{"name":"Journal of nematology","volume":"57 1","pages":"20250012"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy of the newly discovered entomopathogenic nematode <i>Steinernema adamsi</i> against <i>Helicoverpa zea</i>: life stage susceptibility, UV tolerance, and field performance.\",\"authors\":\"James Paul Glover, Nathan Spaulding, Justin George, Maribel Portilla, Gadi V P Reddy, Adler Dillman\",\"doi\":\"10.2478/jofnem-2025-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Helicoverpa zea</i> is a major agricultural pest, particularly in cotton, and poses significant challenges due to its ability to develop resistance to chemical insecticides. This study evaluates the efficacy of the entomopathogenic nematode (<i>Steinernema adamsi</i>) and its mutualistic bacteria (<i>Xenorhabdus</i>) as biological control agents against <i>H. zea</i> larvae in both laboratory and field settings. In laboratory assays, mortality rates for 1<sup>st</sup> to 4<sup>th</sup> instars were high, ranging from 74.2% to 100%, while 5<sup>th</sup> instars exhibited significantly lower susceptibility (<37% mortality). Pupae were completely resistant to nematode infection. The impact of UV radiation on nematode efficacy was assessed, with mortality decreasing from 100% in control conditions (0 hours of UV exposure) to 71.8% after 5 hours of UV exposure, highlighting the vulnerability of <i>S. adamsi</i> to UV degradation. In addition, <i>Xenorhabdus</i> caused 100% mortality in <i>H. zea</i> larvae when injected directly into the hemocoel, but oral toxicity was significantly lower, with 36% mortality in 7 days post-exposure. Field experiments demonstrated that the combination of <i>S. adamsi</i> with 0.05% sodium alginate (hygroscopic agent) and 0.02% Congo red (UV protectant) resulted in a significant increase in larval mortality. In field test A, where <i>S. adamsi</i> was applied in water, mortality averaged 56% with 82% EPN infection. In field test B, the combined treatment of sodium alginate and Congo red led to 98% larval mortality, although infection rates were lower and statistically non-significant. The addition of these protective agents likely enhanced the environmental stability and efficacy of the nematodes under field conditions. These findings suggest that <i>S. adamsi</i> can be an effective biological control agent for <i>H. zea</i>, particularly when combined with formulations that protect against UV radiation and desiccation. Future research should focus on optimizing nematode delivery systems to improve field efficacy under diverse environmental conditions.</p>\",\"PeriodicalId\":16475,\"journal\":{\"name\":\"Journal of nematology\",\"volume\":\"57 1\",\"pages\":\"20250012\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nematology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2478/jofnem-2025-0012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nematology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2478/jofnem-2025-0012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

玉米helicoppa zea是一种主要的农业害虫,特别是在棉花上,由于它对化学杀虫剂产生抗性的能力,它构成了重大挑战。本研究在实验室和田间环境下,评价了昆虫病原线虫(adamsteinerma adamsi)及其共生菌(Xenorhabdus)作为玉米蚜幼虫生物防治剂的效果。在实验室检测中,1 ~ 4龄的死亡率很高,为74.2% ~ 100%,而5龄的adamsi对紫外线降解的敏感性明显较低。此外,直接注射Xenorhabdus对玉米螟幼虫的死亡率为100%,但口服毒性显著降低,暴露后7 d死亡率为36%。田间试验表明,与0.05%海藻酸钠(吸湿剂)和0.02%刚果红(紫外线保护剂)配伍可显著提高adamsi幼虫的死亡率。在实地试验A中,在水中施用adamsi,死亡率平均为56%,EPN感染率为82%。在现场试验B中,海藻酸钠和刚果红联合处理导致98%的幼虫死亡率,尽管感染率较低且无统计学意义。这些保护剂的加入可能会提高线虫在野外条件下的环境稳定性和功效。这些发现表明,当与抗紫外线辐射和干燥的制剂结合使用时,adamsi可能是一种有效的玉米蚜生物防治剂。未来的研究应侧重于优化线虫传递系统,以提高不同环境条件下的田间药效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy of the newly discovered entomopathogenic nematode Steinernema adamsi against Helicoverpa zea: life stage susceptibility, UV tolerance, and field performance.

Helicoverpa zea is a major agricultural pest, particularly in cotton, and poses significant challenges due to its ability to develop resistance to chemical insecticides. This study evaluates the efficacy of the entomopathogenic nematode (Steinernema adamsi) and its mutualistic bacteria (Xenorhabdus) as biological control agents against H. zea larvae in both laboratory and field settings. In laboratory assays, mortality rates for 1st to 4th instars were high, ranging from 74.2% to 100%, while 5th instars exhibited significantly lower susceptibility (<37% mortality). Pupae were completely resistant to nematode infection. The impact of UV radiation on nematode efficacy was assessed, with mortality decreasing from 100% in control conditions (0 hours of UV exposure) to 71.8% after 5 hours of UV exposure, highlighting the vulnerability of S. adamsi to UV degradation. In addition, Xenorhabdus caused 100% mortality in H. zea larvae when injected directly into the hemocoel, but oral toxicity was significantly lower, with 36% mortality in 7 days post-exposure. Field experiments demonstrated that the combination of S. adamsi with 0.05% sodium alginate (hygroscopic agent) and 0.02% Congo red (UV protectant) resulted in a significant increase in larval mortality. In field test A, where S. adamsi was applied in water, mortality averaged 56% with 82% EPN infection. In field test B, the combined treatment of sodium alginate and Congo red led to 98% larval mortality, although infection rates were lower and statistically non-significant. The addition of these protective agents likely enhanced the environmental stability and efficacy of the nematodes under field conditions. These findings suggest that S. adamsi can be an effective biological control agent for H. zea, particularly when combined with formulations that protect against UV radiation and desiccation. Future research should focus on optimizing nematode delivery systems to improve field efficacy under diverse environmental conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of nematology
Journal of nematology 生物-动物学
CiteScore
2.90
自引率
7.70%
发文量
40
审稿时长
14 weeks
期刊介绍: Journal of Nematology is the official technical and scientific communication publication of the Society of Nematologists since 1969. The journal publishes original papers on all aspects of basic, applied, descriptive, theoretical or experimental nematology and adheres to strict peer-review policy. Other categories of papers include invited reviews, research notes, abstracts of papers presented at annual meetings, and special publications as appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信