{"title":"膜受体的反应动力学:空间建模方法。","authors":"Anıl Cengiz, Sean D Lawley","doi":"10.1007/s00285-025-02217-w","DOIUrl":null,"url":null,"abstract":"<p><p>The interactions between diffusing molecules and membrane-bound receptors drive numerous cellular processes. In this work, we develop a spatial model of molecular interactions with membrane receptors by homogenizing the cell membrane and describing the evolution of both molecular diffusion and molecule-receptor interactions. By analyzing a resulting partial differential equation coupled to ordinary differential equations, we derive analytical expressions for the steady-state molecular influx rate in four prototypical interaction scenarios: Michaelis-Menten kinetics, Substrate Competition, Competitive Inhibition, and Uncompetitive Inhibition. For each scenario, we show how to modify the classical well-mixed reaction rate theory to resolve spatial features inherent to receptors bound to cell membranes. We find that naive well-mixed calculations significantly overestimate reaction rates in certain biophysical parameter regimes.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 6","pages":"57"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction kinetics of membrane receptors: a spatial modeling approach.\",\"authors\":\"Anıl Cengiz, Sean D Lawley\",\"doi\":\"10.1007/s00285-025-02217-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interactions between diffusing molecules and membrane-bound receptors drive numerous cellular processes. In this work, we develop a spatial model of molecular interactions with membrane receptors by homogenizing the cell membrane and describing the evolution of both molecular diffusion and molecule-receptor interactions. By analyzing a resulting partial differential equation coupled to ordinary differential equations, we derive analytical expressions for the steady-state molecular influx rate in four prototypical interaction scenarios: Michaelis-Menten kinetics, Substrate Competition, Competitive Inhibition, and Uncompetitive Inhibition. For each scenario, we show how to modify the classical well-mixed reaction rate theory to resolve spatial features inherent to receptors bound to cell membranes. We find that naive well-mixed calculations significantly overestimate reaction rates in certain biophysical parameter regimes.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"90 6\",\"pages\":\"57\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-025-02217-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02217-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Reaction kinetics of membrane receptors: a spatial modeling approach.
The interactions between diffusing molecules and membrane-bound receptors drive numerous cellular processes. In this work, we develop a spatial model of molecular interactions with membrane receptors by homogenizing the cell membrane and describing the evolution of both molecular diffusion and molecule-receptor interactions. By analyzing a resulting partial differential equation coupled to ordinary differential equations, we derive analytical expressions for the steady-state molecular influx rate in four prototypical interaction scenarios: Michaelis-Menten kinetics, Substrate Competition, Competitive Inhibition, and Uncompetitive Inhibition. For each scenario, we show how to modify the classical well-mixed reaction rate theory to resolve spatial features inherent to receptors bound to cell membranes. We find that naive well-mixed calculations significantly overestimate reaction rates in certain biophysical parameter regimes.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.