Ulrike Staudinger, Andreas Janke, Frank Simon, Lothar Jakisch, Eva Bittrich, Petr Formanek, Lukas Mielke, Hendrik Schlicke, Qiong Li, Kathrin Eckstein, Doris Pospiech
{"title":"半氟化PMMA嵌段共聚物薄膜中纳米碳纳米管的定位和电渗透。","authors":"Ulrike Staudinger, Andreas Janke, Frank Simon, Lothar Jakisch, Eva Bittrich, Petr Formanek, Lukas Mielke, Hendrik Schlicke, Qiong Li, Kathrin Eckstein, Doris Pospiech","doi":"10.3390/polym17091271","DOIUrl":null,"url":null,"abstract":"<p><p>Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated (PsfMA) phase and to promote a defined arrangement of MWCNT in the BCP morphology. Thin BCP and BCP/MWCNT composite films are prepared by dip-coating using tetrahydrofuran as solvent with dispersed MWCNT. Atomic force microscopy, scanning and transmission electron microscopy reveal a strong tendency of the BCP to form micelle-like domains consisting of a PMMA shell and a semifluorinated PsfMA core, embedded in a soft phase, containing also semifluorinated blocks. MWCNT preferentially localized in the embedding phase outside the micelles. Perfluoroalkyl-modification leads to significant improvement in the dispersion of MWCNT, both in the polymer solution and the resulting nanocomposite film due to increased interaction of MWCNT with the semifluorinated side chains in the soft phase outside the micelle domains. As a result, reliable electrical conductivity is observed in contrast to films with non-modified MWCNT. Thus, well-dispersed, modified MWCNT provide a defined electrical conduction path at the micrometer level, which is interesting for applications in electronics and vapor sensing.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073811/pdf/","citationCount":"0","resultStr":"{\"title\":\"MWCNT Localization and Electrical Percolation in Thin Films of Semifluorinated PMMA Block Copolymers.\",\"authors\":\"Ulrike Staudinger, Andreas Janke, Frank Simon, Lothar Jakisch, Eva Bittrich, Petr Formanek, Lukas Mielke, Hendrik Schlicke, Qiong Li, Kathrin Eckstein, Doris Pospiech\",\"doi\":\"10.3390/polym17091271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated (PsfMA) phase and to promote a defined arrangement of MWCNT in the BCP morphology. Thin BCP and BCP/MWCNT composite films are prepared by dip-coating using tetrahydrofuran as solvent with dispersed MWCNT. Atomic force microscopy, scanning and transmission electron microscopy reveal a strong tendency of the BCP to form micelle-like domains consisting of a PMMA shell and a semifluorinated PsfMA core, embedded in a soft phase, containing also semifluorinated blocks. MWCNT preferentially localized in the embedding phase outside the micelles. Perfluoroalkyl-modification leads to significant improvement in the dispersion of MWCNT, both in the polymer solution and the resulting nanocomposite film due to increased interaction of MWCNT with the semifluorinated side chains in the soft phase outside the micelle domains. As a result, reliable electrical conductivity is observed in contrast to films with non-modified MWCNT. Thus, well-dispersed, modified MWCNT provide a defined electrical conduction path at the micrometer level, which is interesting for applications in electronics and vapor sensing.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091271\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091271","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
MWCNT Localization and Electrical Percolation in Thin Films of Semifluorinated PMMA Block Copolymers.
Diblock copolymers (BCP) consisting of poly(methyl methacrylate) (PMMA) and poly(1H,1H,2H,2H-perfluorodecyl methacrylate) (PsfMA) blocks are employed as templates for controlled dispersion and localization of multi-walled carbon nanotubes (MWCNT). Short MWCNT are modified with perfluoroalkyl groups to increase the compatibility between MWCNT and the semifluorinated (PsfMA) phase and to promote a defined arrangement of MWCNT in the BCP morphology. Thin BCP and BCP/MWCNT composite films are prepared by dip-coating using tetrahydrofuran as solvent with dispersed MWCNT. Atomic force microscopy, scanning and transmission electron microscopy reveal a strong tendency of the BCP to form micelle-like domains consisting of a PMMA shell and a semifluorinated PsfMA core, embedded in a soft phase, containing also semifluorinated blocks. MWCNT preferentially localized in the embedding phase outside the micelles. Perfluoroalkyl-modification leads to significant improvement in the dispersion of MWCNT, both in the polymer solution and the resulting nanocomposite film due to increased interaction of MWCNT with the semifluorinated side chains in the soft phase outside the micelle domains. As a result, reliable electrical conductivity is observed in contrast to films with non-modified MWCNT. Thus, well-dispersed, modified MWCNT provide a defined electrical conduction path at the micrometer level, which is interesting for applications in electronics and vapor sensing.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.