微囊化富神经酸结构磷脂酰胆碱的制备、消化和储存。

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xun Ang, Hong Chen, Jiqian Xiang, Fang Wei, Siew Young Quek
{"title":"微囊化富神经酸结构磷脂酰胆碱的制备、消化和储存。","authors":"Xun Ang, Hong Chen, Jiqian Xiang, Fang Wei, Siew Young Quek","doi":"10.3390/molecules30092007","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the encapsulation of nervonic acid-enriched structured phospholipid (NA-enriched SPL) by analysing its physical and chemical properties. Wall materials for encapsulation were initially screened, with whey protein isolate and maltodextrin exhibiting the most favourable characteristics. Optimisation of encapsulation parameters determined that a core-to-wall ratio of 1:3 provided the highest physical stability. Encapsulated samples underwent in vitro digestion, where MC-FD exhibited the highest digestibility (79.54%), followed by CV-E (72.1%) and NA-enriched SPL (29.82%). Storage stability was assessed over 90 days at 4 °C, 25 °C, and 45 °C by monitoring particle size, zeta potential, polydispersity index, microscopy, fatty acid composition, and primary and secondary lipid oxidation. MC-FD demonstrated superior stability, maintaining its physical and chemical properties, particularly at 4 °C. In contrast, CV-E showed the lowest physical stability, with significant changes in appearance and increased particle size at elevated temperatures (25 °C and 45 °C).</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073651/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preparation, Digestion, and Storage of Microencapsulated Nervonic Acid-Enriched Structured Phosphatidylcholine.\",\"authors\":\"Xun Ang, Hong Chen, Jiqian Xiang, Fang Wei, Siew Young Quek\",\"doi\":\"10.3390/molecules30092007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the encapsulation of nervonic acid-enriched structured phospholipid (NA-enriched SPL) by analysing its physical and chemical properties. Wall materials for encapsulation were initially screened, with whey protein isolate and maltodextrin exhibiting the most favourable characteristics. Optimisation of encapsulation parameters determined that a core-to-wall ratio of 1:3 provided the highest physical stability. Encapsulated samples underwent in vitro digestion, where MC-FD exhibited the highest digestibility (79.54%), followed by CV-E (72.1%) and NA-enriched SPL (29.82%). Storage stability was assessed over 90 days at 4 °C, 25 °C, and 45 °C by monitoring particle size, zeta potential, polydispersity index, microscopy, fatty acid composition, and primary and secondary lipid oxidation. MC-FD demonstrated superior stability, maintaining its physical and chemical properties, particularly at 4 °C. In contrast, CV-E showed the lowest physical stability, with significant changes in appearance and increased particle size at elevated temperatures (25 °C and 45 °C).</p>\",\"PeriodicalId\":19041,\"journal\":{\"name\":\"Molecules\",\"volume\":\"30 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073651/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules30092007\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30092007","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究主要通过分析神经酸富集结构磷脂(na - enrichment SPL)的物理和化学性质来研究其包封性。最初筛选了用于封装的壁材,乳清分离蛋白和麦芽糖糊精表现出最有利的特性。优化包封参数确定,芯壁比为1:3时,具有最高的物理稳定性。包封后的样品进行体外消化,MC-FD的消化率最高(79.54%),其次是CV-E(72.1%)和na富集SPL(29.82%)。在4°C、25°C和45°C条件下,通过监测颗粒大小、zeta电位、多分散性指数、显微镜、脂肪酸组成以及初级和次级脂质氧化来评估90天的储存稳定性。MC-FD表现出优异的稳定性,保持其物理和化学性质,特别是在4°C时。相比之下,CV-E表现出最低的物理稳定性,在高温(25°C和45°C)下,外观发生了显著变化,颗粒尺寸增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation, Digestion, and Storage of Microencapsulated Nervonic Acid-Enriched Structured Phosphatidylcholine.

This study focuses on the encapsulation of nervonic acid-enriched structured phospholipid (NA-enriched SPL) by analysing its physical and chemical properties. Wall materials for encapsulation were initially screened, with whey protein isolate and maltodextrin exhibiting the most favourable characteristics. Optimisation of encapsulation parameters determined that a core-to-wall ratio of 1:3 provided the highest physical stability. Encapsulated samples underwent in vitro digestion, where MC-FD exhibited the highest digestibility (79.54%), followed by CV-E (72.1%) and NA-enriched SPL (29.82%). Storage stability was assessed over 90 days at 4 °C, 25 °C, and 45 °C by monitoring particle size, zeta potential, polydispersity index, microscopy, fatty acid composition, and primary and secondary lipid oxidation. MC-FD demonstrated superior stability, maintaining its physical and chemical properties, particularly at 4 °C. In contrast, CV-E showed the lowest physical stability, with significant changes in appearance and increased particle size at elevated temperatures (25 °C and 45 °C).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信