{"title":"聚乙烯醇强化脲醛膜对地膜性能及黄瓜栽培的影响","authors":"Tingting Shen, Yongjie Ma, Xueyan Zhang","doi":"10.3390/polym17091277","DOIUrl":null,"url":null,"abstract":"<p><p>To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea-formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea-formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8-96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073705/pdf/","citationCount":"0","resultStr":"{\"title\":\"Urea-Formaldehyde Strengthened by Polyvinyl Alcohol: Impact on Mulch Film Properties and Cucumber Cultivation.\",\"authors\":\"Tingting Shen, Yongjie Ma, Xueyan Zhang\",\"doi\":\"10.3390/polym17091277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea-formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea-formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8-96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091277\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091277","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Urea-Formaldehyde Strengthened by Polyvinyl Alcohol: Impact on Mulch Film Properties and Cucumber Cultivation.
To address the problem of environmental pollution caused by the extensive use of low-density polyethylene (LDPE) mulch film, this study developed a novel sprayable mulch using natural fibers and biodegradable polymers. Urea-formaldehyde resin (UF), strengthened with polyvinyl alcohol (PVA), was used as a modifier to induce beneficial physicochemical structural changes in PVA-modified urea-formaldehyde (PUF) resins. Characterization of these resins was conducted using Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Preparation of the biodegradable mulch was conducted using Xuan paper waste residue (XP) as an enhancer, with PUF as the auxiliary agent. The resulting film (PUF-XP) was examined for differences in thickness, morphological characterization, and rate of weight loss, and the effects of different covering films on cucumber growth, root development, soil temperature, and weed control were evaluated. Characterization reveals that when the PVA content was 4% (W4UF), the film had the lowest free formaldehyde content (0.26%) and highest elongation at break (5.70%). In addition, W4UF could easily undergo thermal degradation at 278.4 °C and possessed a close-knit, three-dimensional structural network. W4UF was then mixed with paper powder and water in various proportions to produce three mulch films (BioT1, BioT2, and BioT3) that demonstrated excellent water retention and heat preservation and inhibited weed growth by 68.8-96.8%. Compared to no mulching (NM), BioT1 increased both the specific root length and root density, as well as improved the plant height, stem diameter, and total biomass of the cucumbers by 43.5%, 34.1%, and 33.9%, respectively. Therefore, a mass ratio of paper powder, water, and W4UF of 1:30:2 produced a biodegradable mulch film that could be used as an alternative to LDPE, mitigating the environmental pollution rendered by synthetic plastic mulch films and offering the potential for a sustainable agricultural application.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.