Tae-Jin Park, Byeong Min Choi, Hyehyun Hong, Jin-Soo Park, Seung-Young Kim
{"title":"卧枕草提取物在蓝光刺激下的抗炎作用。","authors":"Tae-Jin Park, Byeong Min Choi, Hyehyun Hong, Jin-Soo Park, Seung-Young Kim","doi":"10.4014/jmb.2502.02002","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the potential of <i>Ajuga decumbens</i> Thunb. as an anti-inflammatory agent by utilizing plant resources to develop materials through the application of tissue culture and light-emitting diode (LED) cultivation technologies. To compare the changes between <i>A. decumbens</i> callus extract (ADCB) cultivated under blue monochromatic LED light and ADC (the negative control) cultivated under dark conditions, their morphological characteristics were tested and LC/MS analyses were conducted. ADCB exhibited a greenish hue compared with ADC and contained increased levels of specific compounds. The anti-inflammatory activities of the two samples were evaluated using LPS-stimulated macrophages. None of the samples exhibited cytotoxicity at any tested concentration. However, ADCB demonstrated a greater ability to reduce nitric oxide and key pro-inflammatory cytokines including interleukin-1β, interleukin-6, and tumor necrosis factor-α compared to the control. Furthermore, ADCB effectively suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2. It inhibited the phosphorylation of mitogen-activated protein kinase family proteins, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38, in a concentration-dependent manner. Tissue culture and LED cultivation technologies are significant methods for addressing plant supply challenges and enhancing the content of bioactive compounds, thereby increasing the applicability of plant materials. Moreover, ADCB produced using these technologies exhibited anti-inflammatory activity without causing irritation to human skin at active concentrations, suggesting its potential as a novel anti-inflammatory material.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2502002"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-Inflammatory Effects of <i>Ajuga decumbens</i> Extract under Blue Light Stimulation.\",\"authors\":\"Tae-Jin Park, Byeong Min Choi, Hyehyun Hong, Jin-Soo Park, Seung-Young Kim\",\"doi\":\"10.4014/jmb.2502.02002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the potential of <i>Ajuga decumbens</i> Thunb. as an anti-inflammatory agent by utilizing plant resources to develop materials through the application of tissue culture and light-emitting diode (LED) cultivation technologies. To compare the changes between <i>A. decumbens</i> callus extract (ADCB) cultivated under blue monochromatic LED light and ADC (the negative control) cultivated under dark conditions, their morphological characteristics were tested and LC/MS analyses were conducted. ADCB exhibited a greenish hue compared with ADC and contained increased levels of specific compounds. The anti-inflammatory activities of the two samples were evaluated using LPS-stimulated macrophages. None of the samples exhibited cytotoxicity at any tested concentration. However, ADCB demonstrated a greater ability to reduce nitric oxide and key pro-inflammatory cytokines including interleukin-1β, interleukin-6, and tumor necrosis factor-α compared to the control. Furthermore, ADCB effectively suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2. It inhibited the phosphorylation of mitogen-activated protein kinase family proteins, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38, in a concentration-dependent manner. Tissue culture and LED cultivation technologies are significant methods for addressing plant supply challenges and enhancing the content of bioactive compounds, thereby increasing the applicability of plant materials. Moreover, ADCB produced using these technologies exhibited anti-inflammatory activity without causing irritation to human skin at active concentrations, suggesting its potential as a novel anti-inflammatory material.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"35 \",\"pages\":\"e2502002\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2502.02002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2502.02002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Anti-Inflammatory Effects of Ajuga decumbens Extract under Blue Light Stimulation.
We investigated the potential of Ajuga decumbens Thunb. as an anti-inflammatory agent by utilizing plant resources to develop materials through the application of tissue culture and light-emitting diode (LED) cultivation technologies. To compare the changes between A. decumbens callus extract (ADCB) cultivated under blue monochromatic LED light and ADC (the negative control) cultivated under dark conditions, their morphological characteristics were tested and LC/MS analyses were conducted. ADCB exhibited a greenish hue compared with ADC and contained increased levels of specific compounds. The anti-inflammatory activities of the two samples were evaluated using LPS-stimulated macrophages. None of the samples exhibited cytotoxicity at any tested concentration. However, ADCB demonstrated a greater ability to reduce nitric oxide and key pro-inflammatory cytokines including interleukin-1β, interleukin-6, and tumor necrosis factor-α compared to the control. Furthermore, ADCB effectively suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2. It inhibited the phosphorylation of mitogen-activated protein kinase family proteins, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38, in a concentration-dependent manner. Tissue culture and LED cultivation technologies are significant methods for addressing plant supply challenges and enhancing the content of bioactive compounds, thereby increasing the applicability of plant materials. Moreover, ADCB produced using these technologies exhibited anti-inflammatory activity without causing irritation to human skin at active concentrations, suggesting its potential as a novel anti-inflammatory material.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.