Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang
{"title":"scMultiSim:由基因调控网络和细胞-细胞相互作用引导的单细胞多组学和空间数据模拟。","authors":"Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang","doi":"10.1038/s41592-025-02651-0","DOIUrl":null,"url":null,"abstract":"<p><p>Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"982-993"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scMultiSim: simulation of single-cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions.\",\"authors\":\"Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang\",\"doi\":\"10.1038/s41592-025-02651-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"982-993\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02651-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02651-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scMultiSim: simulation of single-cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions.
Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.