scMultiSim:由基因调控网络和细胞-细胞相互作用引导的单细胞多组学和空间数据模拟。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-17 DOI:10.1038/s41592-025-02651-0
Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang
{"title":"scMultiSim:由基因调控网络和细胞-细胞相互作用引导的单细胞多组学和空间数据模拟。","authors":"Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang","doi":"10.1038/s41592-025-02651-0","DOIUrl":null,"url":null,"abstract":"<p><p>Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"982-993"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scMultiSim: simulation of single-cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions.\",\"authors\":\"Hechen Li, Ziqi Zhang, Michael Squires, Xi Chen, Xiuwei Zhang\",\"doi\":\"10.1038/s41592-025-02651-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"982-993\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02651-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02651-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

模拟的单细胞数据对于设计和评估缺乏实验地面真值的计算方法是必不可少的。在这里,我们介绍scMultiSim,一个综合的模拟器,生成多模态单细胞数据,包括基因表达,染色质可及性,RNA速度和空间细胞位置,同时考虑模式之间的关系。与现有的专注于有限生物因素的工具不同,scMultiSim同时模拟细胞身份、基因调控网络、细胞-细胞相互作用和染色质可及性,同时纳入技术噪声。此外,它允许用户轻松调整每个因素的效果。在这里,我们展示了scMultiSim生成具有预期生物效应的数据,并通过对广泛的计算任务进行基准测试来展示其应用,包括多模态和多批次数据集成、RNA速度估计、基因调控网络推断和使用空间解析基因表达数据的细胞-细胞相互作用推断。与现有的模拟器相比,scMultiSim可以对更广泛的现有计算问题甚至新的潜在任务进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scMultiSim: simulation of single-cell multi-omics and spatial data guided by gene regulatory networks and cell-cell interactions.

Simulated single-cell data are essential for designing and evaluating computational methods in the absence of experimental ground truth. Here we present scMultiSim, a comprehensive simulator that generates multimodal single-cell data encompassing gene expression, chromatin accessibility, RNA velocity and spatial cell locations while accounting for the relationships between modalities. Unlike existing tools that focus on limited biological factors, scMultiSim simultaneously models cell identity, gene regulatory networks, cell-cell interactions and chromatin accessibility while incorporating technical noise. Moreover, it allows users to adjust each factor's effect easily. Here we show that scMultiSim generates data with expected biological effects, and demonstrate its applications by benchmarking a wide range of computational tasks, including multimodal and multi-batch data integration, RNA velocity estimation, gene regulatory network inference and cell-cell interaction inference using spatially resolved gene expression data. Compared to existing simulators, scMultiSim can benchmark a much broader range of existing computational problems and even new potential tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信