干细胞衍生外泌体和水凝胶在神经系统疾病中的最新应用。

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Nabil Ajwad, Muzaimi Mustapha, Zamzuri Idris, Si-Yuen Lee
{"title":"干细胞衍生外泌体和水凝胶在神经系统疾病中的最新应用。","authors":"Nabil Ajwad, Muzaimi Mustapha, Zamzuri Idris, Si-Yuen Lee","doi":"10.1089/ten.teb.2024.0353","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke pose significant challenges for conventional therapy due to the complexities of the blood-brain barrier (BBB) and the restricted delivery of drugs to the central nervous system. Exosomes, a type of small extracellular vesicle secreted by nearly all cell types, hold substantial promise as delivery vehicles for therapeutic agents in treating these conditions. Notably, stem cell-secreted exosomes have emerged as particularly effective due to their regenerative potential and natural ability to cross the BBB. Similarly, hydrogels have gained recognition as versatile biomaterials capable of supporting sustained release and targeted delivery of therapeutics. The combination of the regenerative properties of stem cell-derived exosomes (SC-Exos) with the structural and functional benefits of hydrogels offers a promising approach for enhancing neurogenesis, modulating neuroinflammation, and facilitating tissue repair. This review explores the origin, structure, and modifications of exosomes as well as the synthesis and incorporation methods of hydrogels in the therapeutic context for debilitating neurological disorders. It highlights recent advancements in using SC-Exos and hydrogels for therapeutic delivery, addressing both current challenges and future applications. Improving our understanding of hydrogels loaded with SC-Exos for cargo transportation and neural tissue regeneration may pave the way for novel therapeutic strategies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Recent Applications of Stem Cell-Derived Exosomes and Hydrogels in Neurological Disorders.\",\"authors\":\"Nabil Ajwad, Muzaimi Mustapha, Zamzuri Idris, Si-Yuen Lee\",\"doi\":\"10.1089/ten.teb.2024.0353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke pose significant challenges for conventional therapy due to the complexities of the blood-brain barrier (BBB) and the restricted delivery of drugs to the central nervous system. Exosomes, a type of small extracellular vesicle secreted by nearly all cell types, hold substantial promise as delivery vehicles for therapeutic agents in treating these conditions. Notably, stem cell-secreted exosomes have emerged as particularly effective due to their regenerative potential and natural ability to cross the BBB. Similarly, hydrogels have gained recognition as versatile biomaterials capable of supporting sustained release and targeted delivery of therapeutics. The combination of the regenerative properties of stem cell-derived exosomes (SC-Exos) with the structural and functional benefits of hydrogels offers a promising approach for enhancing neurogenesis, modulating neuroinflammation, and facilitating tissue repair. This review explores the origin, structure, and modifications of exosomes as well as the synthesis and incorporation methods of hydrogels in the therapeutic context for debilitating neurological disorders. It highlights recent advancements in using SC-Exos and hydrogels for therapeutic delivery, addressing both current challenges and future applications. Improving our understanding of hydrogels loaded with SC-Exos for cargo transportation and neural tissue regeneration may pave the way for novel therapeutic strategies.</p>\",\"PeriodicalId\":23134,\"journal\":{\"name\":\"Tissue Engineering. Part B, Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering. Part B, Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.teb.2024.0353\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.teb.2024.0353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

神经系统疾病,如阿尔茨海默病、帕金森病和中风,由于血脑屏障(BBB)的复杂性和药物向中枢神经系统的输送受限,对传统治疗提出了重大挑战。外泌体是一种几乎由所有细胞类型分泌的小细胞外囊泡,作为治疗这些疾病的药物的递送载体具有很大的前景。值得注意的是,干细胞分泌的外泌体由于其再生潜力和跨越血脑屏障的自然能力而特别有效。同样,水凝胶作为一种多功能的生物材料,能够支持药物的持续释放和靶向递送。干细胞衍生外泌体(SC-Exos)的再生特性与水凝胶的结构和功能优势相结合,为促进神经发生、调节神经炎症和促进组织修复提供了一种有前途的方法。本文综述了外泌体的起源、结构和修饰,以及水凝胶在衰弱性神经系统疾病治疗中的合成和掺入方法。它强调了使用SC-Exos和水凝胶进行治疗递送的最新进展,解决了当前的挑战和未来的应用。提高我们对装载SC-Exos的水凝胶用于货物运输和神经组织再生的理解可能为新的治疗策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Recent Applications of Stem Cell-Derived Exosomes and Hydrogels in Neurological Disorders.

Neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke pose significant challenges for conventional therapy due to the complexities of the blood-brain barrier (BBB) and the restricted delivery of drugs to the central nervous system. Exosomes, a type of small extracellular vesicle secreted by nearly all cell types, hold substantial promise as delivery vehicles for therapeutic agents in treating these conditions. Notably, stem cell-secreted exosomes have emerged as particularly effective due to their regenerative potential and natural ability to cross the BBB. Similarly, hydrogels have gained recognition as versatile biomaterials capable of supporting sustained release and targeted delivery of therapeutics. The combination of the regenerative properties of stem cell-derived exosomes (SC-Exos) with the structural and functional benefits of hydrogels offers a promising approach for enhancing neurogenesis, modulating neuroinflammation, and facilitating tissue repair. This review explores the origin, structure, and modifications of exosomes as well as the synthesis and incorporation methods of hydrogels in the therapeutic context for debilitating neurological disorders. It highlights recent advancements in using SC-Exos and hydrogels for therapeutic delivery, addressing both current challenges and future applications. Improving our understanding of hydrogels loaded with SC-Exos for cargo transportation and neural tissue regeneration may pave the way for novel therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信