{"title":"负载氟桂利嗪弹性纳米囊泡的响应面优化、制备及体外研究。","authors":"Mahmood A Haiss, Shaimaa N Abd Alhammid","doi":"10.2174/0122117385392040250404114249","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Different variables have been used for the preparation of elastic nanovesicles. In this work, the ethanol injection method has been used to prepare flunarizine spanlastic nanovesicles and study the potential of these variables on vesicle size, encapsulation efficiency, and vesicle elasticity.</p><p><strong>Objective: </strong>The objective of this study was to encapsulate flunarizine dihydrochloride (FHC), a medication with low solubility in water, within nano-elastic vesicles made from Span 60. These vesicles, known as nano-spanlastics, were developed to provide non-invasive trans-nasal delivery and offer a potential therapeutic option for migraines. The ideal formula for flunarizine spanlastic nanovesicles should have the lowest possible particle size and PdI, highest possible zeta potential, vesicle elasticity, drug entrapment, and dissolving efficiency.</p><p><strong>Methods: </strong>An experimental design was followed during the preparation of flunarizine-loaded nanospanlastics utilizing the ethanol injection method and a number of edge activators (EAs). To investigate how the independent parameters affected the features of elastic vesicles and choose the best formula, Design-Expert®, software was used. The screening of 18 formulation and process aspects affecting vesicle size, polydispersity index, deformability index, zeta potential, drug entrapment, and in-vitro release was made easier by the experimental design.</p><p><strong>Results: </strong>The selected Flunarizine spanlastic nanovesicles exhibited a vesicle size of 135 ± 2.81 nm, PdI 0.2462 ± 0.01, ZP -28 ± 0.92 mV, relative deformability of 13.96 ± 0.76 g, EE% of 78.37 ± 1.42, and dissolution efficiency of about 90%.</p><p><strong>Conclusion: </strong>The successful preparation of Flunarizine-loaded spanlastic nanovesicles using ethanol injection method significantly improved the drug's solubility. Flunarizine spanlastic formulations made up of Span 60 and EAs (Tween 40 and SDC) were prepared using various weight ratios of Span 60: EA. The study presented a viable and successful method for nasal delivery of the medication for migraine treatment.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response Surface Optimization, Fabrication and In-vitro Investigation of Elastic Nanovesicles Loaded with Flunarizine.\",\"authors\":\"Mahmood A Haiss, Shaimaa N Abd Alhammid\",\"doi\":\"10.2174/0122117385392040250404114249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Different variables have been used for the preparation of elastic nanovesicles. In this work, the ethanol injection method has been used to prepare flunarizine spanlastic nanovesicles and study the potential of these variables on vesicle size, encapsulation efficiency, and vesicle elasticity.</p><p><strong>Objective: </strong>The objective of this study was to encapsulate flunarizine dihydrochloride (FHC), a medication with low solubility in water, within nano-elastic vesicles made from Span 60. These vesicles, known as nano-spanlastics, were developed to provide non-invasive trans-nasal delivery and offer a potential therapeutic option for migraines. The ideal formula for flunarizine spanlastic nanovesicles should have the lowest possible particle size and PdI, highest possible zeta potential, vesicle elasticity, drug entrapment, and dissolving efficiency.</p><p><strong>Methods: </strong>An experimental design was followed during the preparation of flunarizine-loaded nanospanlastics utilizing the ethanol injection method and a number of edge activators (EAs). To investigate how the independent parameters affected the features of elastic vesicles and choose the best formula, Design-Expert®, software was used. The screening of 18 formulation and process aspects affecting vesicle size, polydispersity index, deformability index, zeta potential, drug entrapment, and in-vitro release was made easier by the experimental design.</p><p><strong>Results: </strong>The selected Flunarizine spanlastic nanovesicles exhibited a vesicle size of 135 ± 2.81 nm, PdI 0.2462 ± 0.01, ZP -28 ± 0.92 mV, relative deformability of 13.96 ± 0.76 g, EE% of 78.37 ± 1.42, and dissolution efficiency of about 90%.</p><p><strong>Conclusion: </strong>The successful preparation of Flunarizine-loaded spanlastic nanovesicles using ethanol injection method significantly improved the drug's solubility. Flunarizine spanlastic formulations made up of Span 60 and EAs (Tween 40 and SDC) were prepared using various weight ratios of Span 60: EA. The study presented a viable and successful method for nasal delivery of the medication for migraine treatment.</p>\",\"PeriodicalId\":19774,\"journal\":{\"name\":\"Pharmaceutical nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0122117385392040250404114249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385392040250404114249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Response Surface Optimization, Fabrication and In-vitro Investigation of Elastic Nanovesicles Loaded with Flunarizine.
Background: Different variables have been used for the preparation of elastic nanovesicles. In this work, the ethanol injection method has been used to prepare flunarizine spanlastic nanovesicles and study the potential of these variables on vesicle size, encapsulation efficiency, and vesicle elasticity.
Objective: The objective of this study was to encapsulate flunarizine dihydrochloride (FHC), a medication with low solubility in water, within nano-elastic vesicles made from Span 60. These vesicles, known as nano-spanlastics, were developed to provide non-invasive trans-nasal delivery and offer a potential therapeutic option for migraines. The ideal formula for flunarizine spanlastic nanovesicles should have the lowest possible particle size and PdI, highest possible zeta potential, vesicle elasticity, drug entrapment, and dissolving efficiency.
Methods: An experimental design was followed during the preparation of flunarizine-loaded nanospanlastics utilizing the ethanol injection method and a number of edge activators (EAs). To investigate how the independent parameters affected the features of elastic vesicles and choose the best formula, Design-Expert®, software was used. The screening of 18 formulation and process aspects affecting vesicle size, polydispersity index, deformability index, zeta potential, drug entrapment, and in-vitro release was made easier by the experimental design.
Results: The selected Flunarizine spanlastic nanovesicles exhibited a vesicle size of 135 ± 2.81 nm, PdI 0.2462 ± 0.01, ZP -28 ± 0.92 mV, relative deformability of 13.96 ± 0.76 g, EE% of 78.37 ± 1.42, and dissolution efficiency of about 90%.
Conclusion: The successful preparation of Flunarizine-loaded spanlastic nanovesicles using ethanol injection method significantly improved the drug's solubility. Flunarizine spanlastic formulations made up of Span 60 and EAs (Tween 40 and SDC) were prepared using various weight ratios of Span 60: EA. The study presented a viable and successful method for nasal delivery of the medication for migraine treatment.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.