Wenhao Yu, Xuhong Yuan, Peng Zhai, Xiaoyun Li, Caixia Han
{"title":"旋毛虫排泄分泌抗原对体外树突状细胞吲哚胺2,3 -双加氧酶表达的影响。","authors":"Wenhao Yu, Xuhong Yuan, Peng Zhai, Xiaoyun Li, Caixia Han","doi":"10.1051/parasite/2025018","DOIUrl":null,"url":null,"abstract":"<p><p>Indoleamine 2, 3-dioxygenase (IDO) is a potent immunoenzyme found in dendritic cells (DCs). Research has demonstrated that Trichinella spiralis induces IDO expression in the host immune response through its excretory-secretory (ES) antigens. However, the role of IDO in the immune response to T. spiralis remains unclear. To examine the effects of T. spiralis ES antigens on IDO expression in DCs in vitro, assessments were conducted using qRT-PCR, Western blotting (WB), flow cytometry, and siRNA transfer. The findings indicated that ES antigen stimulation upregulated IDO expression in DCs in vitro. Furthermore, ES antigen significantly enhanced the expression of the proinflammatory cytokines TNF-α and IFN-γ, along with the anti-inflammatory cytokine IL-10, downstream of IDO in DCs. Flow cytometry analysis confirmed that surface molecules CD40, MHC-II, CD80, and CD86 on DCs were upregulated following stimulation with ES antigen and lipopolysaccharide (LPS). Compared to the ES antigen alone, siRNA620 effectively inhibited IDO levels, demonstrating a statistically significant reduction. Continuous stimulation of DCs by ES antigens may lead to immune tolerance through the activation of IDO-mediated inflammation-associated factors. These results suggest that IDO expression in DCs plays a crucial role in T. spiralis infection.</p>","PeriodicalId":19796,"journal":{"name":"Parasite","volume":"32 ","pages":"26"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Trichinella spiralis excretory-secretory antigens on expression of indoleamine 2, 3-dioxygenase on dendritic cells in vitro.\",\"authors\":\"Wenhao Yu, Xuhong Yuan, Peng Zhai, Xiaoyun Li, Caixia Han\",\"doi\":\"10.1051/parasite/2025018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indoleamine 2, 3-dioxygenase (IDO) is a potent immunoenzyme found in dendritic cells (DCs). Research has demonstrated that Trichinella spiralis induces IDO expression in the host immune response through its excretory-secretory (ES) antigens. However, the role of IDO in the immune response to T. spiralis remains unclear. To examine the effects of T. spiralis ES antigens on IDO expression in DCs in vitro, assessments were conducted using qRT-PCR, Western blotting (WB), flow cytometry, and siRNA transfer. The findings indicated that ES antigen stimulation upregulated IDO expression in DCs in vitro. Furthermore, ES antigen significantly enhanced the expression of the proinflammatory cytokines TNF-α and IFN-γ, along with the anti-inflammatory cytokine IL-10, downstream of IDO in DCs. Flow cytometry analysis confirmed that surface molecules CD40, MHC-II, CD80, and CD86 on DCs were upregulated following stimulation with ES antigen and lipopolysaccharide (LPS). Compared to the ES antigen alone, siRNA620 effectively inhibited IDO levels, demonstrating a statistically significant reduction. Continuous stimulation of DCs by ES antigens may lead to immune tolerance through the activation of IDO-mediated inflammation-associated factors. These results suggest that IDO expression in DCs plays a crucial role in T. spiralis infection.</p>\",\"PeriodicalId\":19796,\"journal\":{\"name\":\"Parasite\",\"volume\":\"32 \",\"pages\":\"26\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasite\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1051/parasite/2025018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1051/parasite/2025018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Effects of Trichinella spiralis excretory-secretory antigens on expression of indoleamine 2, 3-dioxygenase on dendritic cells in vitro.
Indoleamine 2, 3-dioxygenase (IDO) is a potent immunoenzyme found in dendritic cells (DCs). Research has demonstrated that Trichinella spiralis induces IDO expression in the host immune response through its excretory-secretory (ES) antigens. However, the role of IDO in the immune response to T. spiralis remains unclear. To examine the effects of T. spiralis ES antigens on IDO expression in DCs in vitro, assessments were conducted using qRT-PCR, Western blotting (WB), flow cytometry, and siRNA transfer. The findings indicated that ES antigen stimulation upregulated IDO expression in DCs in vitro. Furthermore, ES antigen significantly enhanced the expression of the proinflammatory cytokines TNF-α and IFN-γ, along with the anti-inflammatory cytokine IL-10, downstream of IDO in DCs. Flow cytometry analysis confirmed that surface molecules CD40, MHC-II, CD80, and CD86 on DCs were upregulated following stimulation with ES antigen and lipopolysaccharide (LPS). Compared to the ES antigen alone, siRNA620 effectively inhibited IDO levels, demonstrating a statistically significant reduction. Continuous stimulation of DCs by ES antigens may lead to immune tolerance through the activation of IDO-mediated inflammation-associated factors. These results suggest that IDO expression in DCs plays a crucial role in T. spiralis infection.
期刊介绍:
Parasite is an international open-access, peer-reviewed, online journal publishing high quality papers on all aspects of human and animal parasitology. Reviews, articles and short notes may be submitted. Fields include, but are not limited to: general, medical and veterinary parasitology; morphology, including ultrastructure; parasite systematics, including entomology, acarology, helminthology and protistology, and molecular analyses; molecular biology and biochemistry; immunology of parasitic diseases; host-parasite relationships; ecology and life history of parasites; epidemiology; therapeutics; new diagnostic tools.
All papers in Parasite are published in English. Manuscripts should have a broad interest and must not have been published or submitted elsewhere. No limit is imposed on the length of manuscripts, but they should be concisely written. Papers of limited interest such as case reports, epidemiological studies in punctual areas, isolated new geographical records, and systematic descriptions of single species will generally not be accepted, but might be considered if the authors succeed in demonstrating their interest.