一种用于软骨修复的新型可注射细胞负载水凝胶系统:体内和体外研究。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Beini Mao, Ming Tian, Yuling Yin, Lang Li, Jian Li, Daixu Wei, Weili Fu
{"title":"一种用于软骨修复的新型可注射细胞负载水凝胶系统:体内和体外研究。","authors":"Beini Mao, Ming Tian, Yuling Yin, Lang Li, Jian Li, Daixu Wei, Weili Fu","doi":"10.1089/ten.tea.2025.0024","DOIUrl":null,"url":null,"abstract":"<p><p>Polyhydroxyalkanoates are promising biomaterials, but their application in cartilage repair is still limited. In this study, an injectable thermosensitive hydrogel poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate)-Polyethylene Glycol (PEG)/hyaluronic acid/kartogenin was prepared from 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxyhexanoate, hyaluronic acid, and kartogenin. The hydrogels are porous, temperature-sensitive, and hydrophilic and have good compressive modulus. Mesenchymal stem cells derived from peripheral blood can proliferate on the hydrogels under two- and three-dimensional cultures. In addition, the hydrogel has the ability to induce chondrogenic differentiation of stem cells and induce M2 differentiation of macrophages. The hydrogel loaded with peripheral blood mesenchymal stem cells can repair cartilage defects in the knee joints of New Zealand rabbits and the newly formed cartilage was identified as type II collagen. Overall, this newly developed system could provide a new treatment option for repairing cartilage defects. Impact Statement In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) was modified with hyaluronic acid and kartogenin to synthesize a thermosensitive injectable hydrogel scaffold. The scaffold has anti-inflammatory and cartilage-promoting effects. This study used the scaffold to carry peripheral blood mesenchymal stem cells to repair cartilage defects in rabbit knee joints, providing a new idea for the treatment of cartilage defects.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Injectable Cell-Loaded Hydrogel System for Cartilage Repair: <i>In Vivo</i> and <i>In Vitro</i> Study.\",\"authors\":\"Beini Mao, Ming Tian, Yuling Yin, Lang Li, Jian Li, Daixu Wei, Weili Fu\",\"doi\":\"10.1089/ten.tea.2025.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyhydroxyalkanoates are promising biomaterials, but their application in cartilage repair is still limited. In this study, an injectable thermosensitive hydrogel poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate)-Polyethylene Glycol (PEG)/hyaluronic acid/kartogenin was prepared from 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxyhexanoate, hyaluronic acid, and kartogenin. The hydrogels are porous, temperature-sensitive, and hydrophilic and have good compressive modulus. Mesenchymal stem cells derived from peripheral blood can proliferate on the hydrogels under two- and three-dimensional cultures. In addition, the hydrogel has the ability to induce chondrogenic differentiation of stem cells and induce M2 differentiation of macrophages. The hydrogel loaded with peripheral blood mesenchymal stem cells can repair cartilage defects in the knee joints of New Zealand rabbits and the newly formed cartilage was identified as type II collagen. Overall, this newly developed system could provide a new treatment option for repairing cartilage defects. Impact Statement In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) was modified with hyaluronic acid and kartogenin to synthesize a thermosensitive injectable hydrogel scaffold. The scaffold has anti-inflammatory and cartilage-promoting effects. This study used the scaffold to carry peripheral blood mesenchymal stem cells to repair cartilage defects in rabbit knee joints, providing a new idea for the treatment of cartilage defects.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tea.2025.0024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2025.0024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

聚羟基烷酸酯是一种很有前途的生物材料,但其在软骨修复中的应用仍然有限。以3-羟基丁酸酯、3-羟基戊酸酯、3-羟基己酸酯、透明质酸和kartogenin为原料,制备了一种可注射热敏水凝胶聚(3-羟基丁酸酯-co-3-羟基戊酸酯-co-3-羟基己酸酯)-聚乙二醇/透明质酸/kartogenin。水凝胶具有多孔性、温敏性和亲水性,具有良好的压缩模量。来源于外周血的间充质干细胞可以在二维和三维培养的水凝胶上增殖。此外,水凝胶还具有诱导干细胞成软骨分化和诱导巨噬细胞M2分化的能力。载外周血间充质干细胞的水凝胶可以修复新西兰兔膝关节软骨缺损,新形成的软骨鉴定为II型胶原。总之,这个新开发的系统可以为修复软骨缺损提供新的治疗选择。在本研究中,用透明质酸和kartogenin修饰聚(3-羟基丁酸酯-co-3-羟基戊酸酯-co-3-羟基己酸酯)合成了一种可注射的热敏水凝胶支架。支架具有抗炎和促进软骨的作用。本研究采用支架携带外周血间充质干细胞修复兔膝关节软骨缺损,为软骨缺损的治疗提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Injectable Cell-Loaded Hydrogel System for Cartilage Repair: In Vivo and In Vitro Study.

Polyhydroxyalkanoates are promising biomaterials, but their application in cartilage repair is still limited. In this study, an injectable thermosensitive hydrogel poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate)-Polyethylene Glycol (PEG)/hyaluronic acid/kartogenin was prepared from 3-hydroxybutyrate, 3-hydroxyvalerate, 3-hydroxyhexanoate, hyaluronic acid, and kartogenin. The hydrogels are porous, temperature-sensitive, and hydrophilic and have good compressive modulus. Mesenchymal stem cells derived from peripheral blood can proliferate on the hydrogels under two- and three-dimensional cultures. In addition, the hydrogel has the ability to induce chondrogenic differentiation of stem cells and induce M2 differentiation of macrophages. The hydrogel loaded with peripheral blood mesenchymal stem cells can repair cartilage defects in the knee joints of New Zealand rabbits and the newly formed cartilage was identified as type II collagen. Overall, this newly developed system could provide a new treatment option for repairing cartilage defects. Impact Statement In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) was modified with hyaluronic acid and kartogenin to synthesize a thermosensitive injectable hydrogel scaffold. The scaffold has anti-inflammatory and cartilage-promoting effects. This study used the scaffold to carry peripheral blood mesenchymal stem cells to repair cartilage defects in rabbit knee joints, providing a new idea for the treatment of cartilage defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信