脑血管周围生态位三维水凝胶模型的辐射损伤。

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Tissue engineering. Part C, Methods Pub Date : 2025-05-01 Epub Date: 2025-05-07 DOI:10.1089/ten.tec.2025.0007
Yoanna I Ivanova, Alison C Nunes, Val Cruz, Kimberly Selting, Brendan A C Harley
{"title":"脑血管周围生态位三维水凝胶模型的辐射损伤。","authors":"Yoanna I Ivanova, Alison C Nunes, Val Cruz, Kimberly Selting, Brendan A C Harley","doi":"10.1089/ten.tec.2025.0007","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly aggressive and recurrent brain cancer characterized by diffuse metastasis at the tumor margins. Radiation therapy is a standard component of current treatment and offers potential for improved patient outcomes. While radiation therapy targets GBM cells in the tumor margins, it may also significantly damage adjacent noncancerous tissues, leading to reduced quality of life and potentially creating a tumor-supportive microenvironment. The perivascular niche (PVN) in the tumor margins is believed to play a significant role in regulating the glioblastoma stem cell subpopulation as well as serving as a site for cancer recurrence and migration. Understanding the impact of radiation on the PVN can better inform radiation schemes and improve our understanding of GBM recurrence, but is difficult <i>in vivo</i>. Here, we adapt a previously developed three-dimensional hydrogel model of the brain PVN to investigate the impact of radiation dosage and delivery rate on PVN properties <i>in vitro</i>. Effects of radiation on vessel architecture can be measured in this hydrogel-based model, suggesting an approach that can provide insight into the effects of radiation on a shorter time scale relative to <i>in vivo</i> experiments.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"181-190"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation Damage to a Three-Dimensional Hydrogel Model of the Brain Perivascular Niche.\",\"authors\":\"Yoanna I Ivanova, Alison C Nunes, Val Cruz, Kimberly Selting, Brendan A C Harley\",\"doi\":\"10.1089/ten.tec.2025.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glioblastoma (GBM) is a highly aggressive and recurrent brain cancer characterized by diffuse metastasis at the tumor margins. Radiation therapy is a standard component of current treatment and offers potential for improved patient outcomes. While radiation therapy targets GBM cells in the tumor margins, it may also significantly damage adjacent noncancerous tissues, leading to reduced quality of life and potentially creating a tumor-supportive microenvironment. The perivascular niche (PVN) in the tumor margins is believed to play a significant role in regulating the glioblastoma stem cell subpopulation as well as serving as a site for cancer recurrence and migration. Understanding the impact of radiation on the PVN can better inform radiation schemes and improve our understanding of GBM recurrence, but is difficult <i>in vivo</i>. Here, we adapt a previously developed three-dimensional hydrogel model of the brain PVN to investigate the impact of radiation dosage and delivery rate on PVN properties <i>in vitro</i>. Effects of radiation on vessel architecture can be measured in this hydrogel-based model, suggesting an approach that can provide insight into the effects of radiation on a shorter time scale relative to <i>in vivo</i> experiments.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\" \",\"pages\":\"181-190\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2025.0007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

胶质母细胞瘤(GBM)是一种具有高度侵袭性和复发性的脑癌,以肿瘤边缘弥漫性转移为特征。放射治疗是当前治疗的标准组成部分,并有可能改善患者的预后。虽然放射治疗的目标是肿瘤边缘的GBM细胞,但它也可能显著损害邻近的非癌组织,导致生活质量下降,并可能创造一个支持肿瘤的微环境。肿瘤边缘的血管周围生态位(PVN)被认为在调节胶质母细胞瘤干细胞亚群中发挥重要作用,并作为癌症复发和迁移的一个位点。了解辐射对PVN的影响可以更好地为放疗方案提供信息,提高我们对GBM复发的理解,但在体内很难。在这里,我们采用先前开发的脑PVN三维水凝胶模型来研究辐射剂量和递送率对PVN体外特性的影响。在这种基于水凝胶的模型中,可以测量辐射对血管结构的影响,这表明,相对于体内实验,这种方法可以在更短的时间尺度上深入了解辐射的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation Damage to a Three-Dimensional Hydrogel Model of the Brain Perivascular Niche.

Glioblastoma (GBM) is a highly aggressive and recurrent brain cancer characterized by diffuse metastasis at the tumor margins. Radiation therapy is a standard component of current treatment and offers potential for improved patient outcomes. While radiation therapy targets GBM cells in the tumor margins, it may also significantly damage adjacent noncancerous tissues, leading to reduced quality of life and potentially creating a tumor-supportive microenvironment. The perivascular niche (PVN) in the tumor margins is believed to play a significant role in regulating the glioblastoma stem cell subpopulation as well as serving as a site for cancer recurrence and migration. Understanding the impact of radiation on the PVN can better inform radiation schemes and improve our understanding of GBM recurrence, but is difficult in vivo. Here, we adapt a previously developed three-dimensional hydrogel model of the brain PVN to investigate the impact of radiation dosage and delivery rate on PVN properties in vitro. Effects of radiation on vessel architecture can be measured in this hydrogel-based model, suggesting an approach that can provide insight into the effects of radiation on a shorter time scale relative to in vivo experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信