{"title":"物种特异性层球对外部pH变化的响应。","authors":"Cristal Lopez-Gonzalez, Jean-Baptiste Floc'h, Tanya Renner, Kadeem J Gilbert","doi":"10.1093/jxb/eraf157","DOIUrl":null,"url":null,"abstract":"<p><p>The leaf surface, known as the phylloplane, represents the initial point of contact for plants in their interaction with the aboveground environment. Although prior research has assessed how leaves respond to external pH variations, particularly in the context of acid rain, there remains a limited understanding of the molecular mechanisms through which plants detect, respond to, and mitigate cellular damage. To look at plant responses to external pH changes, we measured the phylloplane pH for five species with variable phylloplane pH that ranged in the dry control. Moreover, we investigated the phylloplane pH in response to three pH treatments (pH 6.5, 4, and 2) and found that plants can modify their phylloplane pH, and this buffering ability is species-specific. Among the species analyzed, only Gossypium displayed a strong buffering ability. For treatments where leaves were exposed to either pH 6.5 or pH 4, Gossypium alkalinized the phylloplane pH slightly higher than the dry control pH. Remarkably, when leaves were exposed to pH 2, Gossypium was able to buffer the pH to 6 within five minutes. Furthermore, our transcriptional analysis indicated that the responses to external pH changes varied among species, highlighting differentially expressed genes associated with calcium (Ca2+) signaling pathways, as well as Ca2+- and H+-ATPases pumps. These findings also suggest that pH stress impacted photosynthesis, and that both wetness and moderate pH shifts may trigger additional abiotic and biotic stress signaling pathways.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Species-specific phyllosphere responses to external pH change.\",\"authors\":\"Cristal Lopez-Gonzalez, Jean-Baptiste Floc'h, Tanya Renner, Kadeem J Gilbert\",\"doi\":\"10.1093/jxb/eraf157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The leaf surface, known as the phylloplane, represents the initial point of contact for plants in their interaction with the aboveground environment. Although prior research has assessed how leaves respond to external pH variations, particularly in the context of acid rain, there remains a limited understanding of the molecular mechanisms through which plants detect, respond to, and mitigate cellular damage. To look at plant responses to external pH changes, we measured the phylloplane pH for five species with variable phylloplane pH that ranged in the dry control. Moreover, we investigated the phylloplane pH in response to three pH treatments (pH 6.5, 4, and 2) and found that plants can modify their phylloplane pH, and this buffering ability is species-specific. Among the species analyzed, only Gossypium displayed a strong buffering ability. For treatments where leaves were exposed to either pH 6.5 or pH 4, Gossypium alkalinized the phylloplane pH slightly higher than the dry control pH. Remarkably, when leaves were exposed to pH 2, Gossypium was able to buffer the pH to 6 within five minutes. Furthermore, our transcriptional analysis indicated that the responses to external pH changes varied among species, highlighting differentially expressed genes associated with calcium (Ca2+) signaling pathways, as well as Ca2+- and H+-ATPases pumps. These findings also suggest that pH stress impacted photosynthesis, and that both wetness and moderate pH shifts may trigger additional abiotic and biotic stress signaling pathways.</p>\",\"PeriodicalId\":15820,\"journal\":{\"name\":\"Journal of Experimental Botany\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jxb/eraf157\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf157","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Species-specific phyllosphere responses to external pH change.
The leaf surface, known as the phylloplane, represents the initial point of contact for plants in their interaction with the aboveground environment. Although prior research has assessed how leaves respond to external pH variations, particularly in the context of acid rain, there remains a limited understanding of the molecular mechanisms through which plants detect, respond to, and mitigate cellular damage. To look at plant responses to external pH changes, we measured the phylloplane pH for five species with variable phylloplane pH that ranged in the dry control. Moreover, we investigated the phylloplane pH in response to three pH treatments (pH 6.5, 4, and 2) and found that plants can modify their phylloplane pH, and this buffering ability is species-specific. Among the species analyzed, only Gossypium displayed a strong buffering ability. For treatments where leaves were exposed to either pH 6.5 or pH 4, Gossypium alkalinized the phylloplane pH slightly higher than the dry control pH. Remarkably, when leaves were exposed to pH 2, Gossypium was able to buffer the pH to 6 within five minutes. Furthermore, our transcriptional analysis indicated that the responses to external pH changes varied among species, highlighting differentially expressed genes associated with calcium (Ca2+) signaling pathways, as well as Ca2+- and H+-ATPases pumps. These findings also suggest that pH stress impacted photosynthesis, and that both wetness and moderate pH shifts may trigger additional abiotic and biotic stress signaling pathways.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.