Michael J Lippincott, Jenna Tomkinson, Dave Bunten, Milad Mohammadi, Johanna Kastl, Johannes Knop, Ralf Schwandner, Jiamin Huang, Grant Ongo, Nathaniel Robichaud, Milad Dagher, Andrés Mansilla-Soto, Cynthia Saravia-Estrada, Masafumi Tsuboi, Carla Basualto-Alarcón, Gregory P Way
{"title":"焦亡的形态学和分泌组图。","authors":"Michael J Lippincott, Jenna Tomkinson, Dave Bunten, Milad Mohammadi, Johanna Kastl, Johannes Knop, Ralf Schwandner, Jiamin Huang, Grant Ongo, Nathaniel Robichaud, Milad Dagher, Andrés Mansilla-Soto, Cynthia Saravia-Estrada, Masafumi Tsuboi, Carla Basualto-Alarcón, Gregory P Way","doi":"10.1091/mbc.E25-03-0119","DOIUrl":null,"url":null,"abstract":"<p><p>Pyroptosis represents one type of programmed cell death. It is a form of inflammatory cell death that is canonically defined by caspase-1 cleavage and Gasdermin-mediated membrane pore formation. Caspase-1 initiates the inflammatory response (through IL-1β processing), and the N-terminal cleaved fragment of Gasdermin D polymerizes at the cell periphery forming pores to secrete proinflammatory markers. Cell morphology also changes in pyroptosis, with nuclear condensation and membrane rupture. However, recent research challenges canon, revealing a more complex secretome and morphological response in pyroptosis, including overlapping molecular characterization with other forms of cell death, such as apoptosis. Here, we take a multimodal, systems biology approach to characterize pyroptosis. We treated human peripheral blood mononuclear cells (PBMCs) with 36 different combinations of stimuli to induce pyroptosis or apoptosis. We applied both secretome profiling (nELISA) and high-content fluorescence microscopy (Cell Painting). To differentiate apoptotic, pyroptotic, and control cells, we used canonical secretome markers and modified our Cell Painting assay to mark the N-terminus of Gasdermin D. We trained hundreds of machine learning (ML) models to reveal intricate morphology signatures of pyroptosis that implicate changes across many different organelles and predict levels of many proinflammatory markers. Overall, our analysis provides a detailed map of pyroptosis which includes overlapping and distinct connections with apoptosis revealed through a mechanistic link between cell morphology and cell secretome.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":"36 6","pages":"ar63"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A morphology and secretome map of pyroptosis.\",\"authors\":\"Michael J Lippincott, Jenna Tomkinson, Dave Bunten, Milad Mohammadi, Johanna Kastl, Johannes Knop, Ralf Schwandner, Jiamin Huang, Grant Ongo, Nathaniel Robichaud, Milad Dagher, Andrés Mansilla-Soto, Cynthia Saravia-Estrada, Masafumi Tsuboi, Carla Basualto-Alarcón, Gregory P Way\",\"doi\":\"10.1091/mbc.E25-03-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pyroptosis represents one type of programmed cell death. It is a form of inflammatory cell death that is canonically defined by caspase-1 cleavage and Gasdermin-mediated membrane pore formation. Caspase-1 initiates the inflammatory response (through IL-1β processing), and the N-terminal cleaved fragment of Gasdermin D polymerizes at the cell periphery forming pores to secrete proinflammatory markers. Cell morphology also changes in pyroptosis, with nuclear condensation and membrane rupture. However, recent research challenges canon, revealing a more complex secretome and morphological response in pyroptosis, including overlapping molecular characterization with other forms of cell death, such as apoptosis. Here, we take a multimodal, systems biology approach to characterize pyroptosis. We treated human peripheral blood mononuclear cells (PBMCs) with 36 different combinations of stimuli to induce pyroptosis or apoptosis. We applied both secretome profiling (nELISA) and high-content fluorescence microscopy (Cell Painting). To differentiate apoptotic, pyroptotic, and control cells, we used canonical secretome markers and modified our Cell Painting assay to mark the N-terminus of Gasdermin D. We trained hundreds of machine learning (ML) models to reveal intricate morphology signatures of pyroptosis that implicate changes across many different organelles and predict levels of many proinflammatory markers. Overall, our analysis provides a detailed map of pyroptosis which includes overlapping and distinct connections with apoptosis revealed through a mechanistic link between cell morphology and cell secretome.</p>\",\"PeriodicalId\":18735,\"journal\":{\"name\":\"Molecular Biology of the Cell\",\"volume\":\"36 6\",\"pages\":\"ar63\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology of the Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E25-03-0119\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-03-0119","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Pyroptosis represents one type of programmed cell death. It is a form of inflammatory cell death that is canonically defined by caspase-1 cleavage and Gasdermin-mediated membrane pore formation. Caspase-1 initiates the inflammatory response (through IL-1β processing), and the N-terminal cleaved fragment of Gasdermin D polymerizes at the cell periphery forming pores to secrete proinflammatory markers. Cell morphology also changes in pyroptosis, with nuclear condensation and membrane rupture. However, recent research challenges canon, revealing a more complex secretome and morphological response in pyroptosis, including overlapping molecular characterization with other forms of cell death, such as apoptosis. Here, we take a multimodal, systems biology approach to characterize pyroptosis. We treated human peripheral blood mononuclear cells (PBMCs) with 36 different combinations of stimuli to induce pyroptosis or apoptosis. We applied both secretome profiling (nELISA) and high-content fluorescence microscopy (Cell Painting). To differentiate apoptotic, pyroptotic, and control cells, we used canonical secretome markers and modified our Cell Painting assay to mark the N-terminus of Gasdermin D. We trained hundreds of machine learning (ML) models to reveal intricate morphology signatures of pyroptosis that implicate changes across many different organelles and predict levels of many proinflammatory markers. Overall, our analysis provides a detailed map of pyroptosis which includes overlapping and distinct connections with apoptosis revealed through a mechanistic link between cell morphology and cell secretome.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.