Brent E Allman, Luiz Vieira, Daniel J Diaz, Claus O Wilke
{"title":"使用多个机器学习框架对病毒逃逸语言模型进行系统评估。","authors":"Brent E Allman, Luiz Vieira, Daniel J Diaz, Claus O Wilke","doi":"10.1098/rsif.2024.0598","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circulating mutations pose a concern can inform treatment or mitigation strategies such as alternative vaccines or targeted social distancing. In 2021, Hie B, Zhong ED, Berger B, Bryson B. 2021 Learning the language of viral evolution and escape. <i>Science</i> <b>371</b>, 284-288. (doi:10.1126/science.abd7331) proposed that variants of concern can be identified using two quantities extracted from protein language models, grammaticality and semantic change. These quantities are defined by analogy to concepts from natural language processing. Grammaticality is intended to be a measure of whether a variant viral protein is viable, and semantic change is intended to be a measure of potential for immune escape. Here, we systematically test this hypothesis, taking advantage of several high-throughput datasets that have become available, and also comparing this model with several more recently published machine learning models. We find that grammaticality can be a measure of protein viability, though methods that are trained explicitly to predict mutational effects appear to be more effective. By contrast, we do not find compelling evidence that semantic change is a useful tool for identifying immune escape mutations.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 225","pages":"20240598"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040448/pdf/","citationCount":"0","resultStr":"{\"title\":\"A systematic evaluation of the language-of-viral-escape model using multiple machine learning frameworks.\",\"authors\":\"Brent E Allman, Luiz Vieira, Daniel J Diaz, Claus O Wilke\",\"doi\":\"10.1098/rsif.2024.0598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circulating mutations pose a concern can inform treatment or mitigation strategies such as alternative vaccines or targeted social distancing. In 2021, Hie B, Zhong ED, Berger B, Bryson B. 2021 Learning the language of viral evolution and escape. <i>Science</i> <b>371</b>, 284-288. (doi:10.1126/science.abd7331) proposed that variants of concern can be identified using two quantities extracted from protein language models, grammaticality and semantic change. These quantities are defined by analogy to concepts from natural language processing. Grammaticality is intended to be a measure of whether a variant viral protein is viable, and semantic change is intended to be a measure of potential for immune escape. Here, we systematically test this hypothesis, taking advantage of several high-throughput datasets that have become available, and also comparing this model with several more recently published machine learning models. We find that grammaticality can be a measure of protein viability, though methods that are trained explicitly to predict mutational effects appear to be more effective. By contrast, we do not find compelling evidence that semantic change is a useful tool for identifying immune escape mutations.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 225\",\"pages\":\"20240598\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0598\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0598","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A systematic evaluation of the language-of-viral-escape model using multiple machine learning frameworks.
Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circulating mutations pose a concern can inform treatment or mitigation strategies such as alternative vaccines or targeted social distancing. In 2021, Hie B, Zhong ED, Berger B, Bryson B. 2021 Learning the language of viral evolution and escape. Science371, 284-288. (doi:10.1126/science.abd7331) proposed that variants of concern can be identified using two quantities extracted from protein language models, grammaticality and semantic change. These quantities are defined by analogy to concepts from natural language processing. Grammaticality is intended to be a measure of whether a variant viral protein is viable, and semantic change is intended to be a measure of potential for immune escape. Here, we systematically test this hypothesis, taking advantage of several high-throughput datasets that have become available, and also comparing this model with several more recently published machine learning models. We find that grammaticality can be a measure of protein viability, though methods that are trained explicitly to predict mutational effects appear to be more effective. By contrast, we do not find compelling evidence that semantic change is a useful tool for identifying immune escape mutations.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.