Sander T Hazelaar, Chenyao Wang, Christophe de Wagter, Florian T Muijres, Guido C H E de Croon, Matthew Yedutenko
{"title":"四旋翼飞行器的仿生自适应视觉伺服控制。","authors":"Sander T Hazelaar, Chenyao Wang, Christophe de Wagter, Florian T Muijres, Guido C H E de Croon, Matthew Yedutenko","doi":"10.1088/1748-3190/adcdde","DOIUrl":null,"url":null,"abstract":"<p><p>Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulated in a step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to be a powerful tool for understanding challenges encountered by visually-guided flying systems. We found that landing on a relatively small target requires mitigation of the noise with adaptive low-pass filtering, while compensation for the delays introduced by this filter requires open-loop forward accelerations to switch from divergence setpoint. Both implemented solutions are consistent with insect physiological properties. Our study evaluates the challenges of visual-based navigation for flying insects. It highlights the benefits and feasibility of the switching divergence strategy that allows for faster and safer landings in the context of robotics.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired adaptive visual servoing control for quadrotors.\",\"authors\":\"Sander T Hazelaar, Chenyao Wang, Christophe de Wagter, Florian T Muijres, Guido C H E de Croon, Matthew Yedutenko\",\"doi\":\"10.1088/1748-3190/adcdde\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulated in a step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to be a powerful tool for understanding challenges encountered by visually-guided flying systems. We found that landing on a relatively small target requires mitigation of the noise with adaptive low-pass filtering, while compensation for the delays introduced by this filter requires open-loop forward accelerations to switch from divergence setpoint. Both implemented solutions are consistent with insect physiological properties. Our study evaluates the challenges of visual-based navigation for flying insects. It highlights the benefits and feasibility of the switching divergence strategy that allows for faster and safer landings in the context of robotics.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/adcdde\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adcdde","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bioinspired adaptive visual servoing control for quadrotors.
Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulated in a step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to be a powerful tool for understanding challenges encountered by visually-guided flying systems. We found that landing on a relatively small target requires mitigation of the noise with adaptive low-pass filtering, while compensation for the delays introduced by this filter requires open-loop forward accelerations to switch from divergence setpoint. Both implemented solutions are consistent with insect physiological properties. Our study evaluates the challenges of visual-based navigation for flying insects. It highlights the benefits and feasibility of the switching divergence strategy that allows for faster and safer landings in the context of robotics.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.