Alida Melissa Bouatta, Franziska Anzenberger, Lisa Riederauer, Andrea Lepper, Philipp Denninger
{"title":"特定ROPGEFs对Rho蛋白的极化亚细胞激活驱动拟南芥花粉萌发。","authors":"Alida Melissa Bouatta, Franziska Anzenberger, Lisa Riederauer, Andrea Lepper, Philipp Denninger","doi":"10.1371/journal.pbio.3003139","DOIUrl":null,"url":null,"abstract":"<p><p>During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 4","pages":"e3003139"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043234/pdf/","citationCount":"0","resultStr":"{\"title\":\"Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana.\",\"authors\":\"Alida Melissa Bouatta, Franziska Anzenberger, Lisa Riederauer, Andrea Lepper, Philipp Denninger\",\"doi\":\"10.1371/journal.pbio.3003139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 4\",\"pages\":\"e3003139\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043234/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003139\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003139","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana.
During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.