基于累积链接函数的有序响应变量的Logistic多维数据分析。

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Psychometrika Pub Date : 2025-03-27 DOI:10.1017/psy.2025.10
Mark de Rooij, Ligaya Breemer, Dion Woestenburg, Frank Busing
{"title":"基于累积链接函数的有序响应变量的Logistic多维数据分析。","authors":"Mark de Rooij, Ligaya Breemer, Dion Woestenburg, Frank Busing","doi":"10.1017/psy.2025.10","DOIUrl":null,"url":null,"abstract":"<p><p>We present a multidimensional data analysis framework for the analysis of ordinal response variables. Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit models. The framework includes unsupervised methods, when no predictor variables are available, and supervised methods, when predictor variables are available. We distinguish between dominance variables and proximity variables, where dominance variables are analyzed using inner product models, whereas the proximity variables are analyzed using distance models. An expectation-majorization-minimization algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with three empirical data sets highlighting the advantages of the proposed framework. A simulation study is conducted to evaluate the performance of the algorithm.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-37"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logistic Multidimensional Data Analysis for Ordinal Response Variables Using a Cumulative Link Function.\",\"authors\":\"Mark de Rooij, Ligaya Breemer, Dion Woestenburg, Frank Busing\",\"doi\":\"10.1017/psy.2025.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a multidimensional data analysis framework for the analysis of ordinal response variables. Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit models. The framework includes unsupervised methods, when no predictor variables are available, and supervised methods, when predictor variables are available. We distinguish between dominance variables and proximity variables, where dominance variables are analyzed using inner product models, whereas the proximity variables are analyzed using distance models. An expectation-majorization-minimization algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with three empirical data sets highlighting the advantages of the proposed framework. A simulation study is conducted to evaluate the performance of the algorithm.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1-37\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/psy.2025.10\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个多维数据分析框架,用于分析有序响应变量。在有序变量的基础上,我们假设一个连续的潜在变量,导致累积logit模型。该框架包括无监督方法(当没有可用的预测变量时)和监督方法(当可用的预测变量时)。我们区分优势变量和接近变量,其中优势变量使用内积模型进行分析,而接近变量使用距离模型进行分析。推导了一种期望-最大化-最小化算法来估计模型的参数。我们用三个经验数据集来说明我们的方法,突出了所提议框架的优势。通过仿真研究对该算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logistic Multidimensional Data Analysis for Ordinal Response Variables Using a Cumulative Link Function.

We present a multidimensional data analysis framework for the analysis of ordinal response variables. Underlying the ordinal variables, we assume a continuous latent variable, leading to cumulative logit models. The framework includes unsupervised methods, when no predictor variables are available, and supervised methods, when predictor variables are available. We distinguish between dominance variables and proximity variables, where dominance variables are analyzed using inner product models, whereas the proximity variables are analyzed using distance models. An expectation-majorization-minimization algorithm is derived for estimation of the parameters of the models. We illustrate our methodology with three empirical data sets highlighting the advantages of the proposed framework. A simulation study is conducted to evaluate the performance of the algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信