Shirel Attia, Arie Oksenberg, Jeremy Levy, Angeleene Ang, Revital Shani-Hershkovich, Alissa Adler, Shlomit Katsav, Sharon Haimov, Alexandra Alexandrovich, Riva Tauman, Joachim A Behar
{"title":"人工智能算法在成人阻塞性睡眠呼吸暂停和睡眠分期诊断中的临床验证","authors":"Shirel Attia, Arie Oksenberg, Jeremy Levy, Angeleene Ang, Revital Shani-Hershkovich, Alissa Adler, Shlomit Katsav, Sharon Haimov, Alexandra Alexandrovich, Riva Tauman, Joachim A Behar","doi":"10.1111/jsr.70093","DOIUrl":null,"url":null,"abstract":"<p><p>Home sleep apnea tests (HSATs) have emerged as alternatives to in-laboratory polysomnography (PSG), but Type IV HSATs often show limited diagnostic performance. This study clinically validates SleepAI, a novel remote digital health system that applies AI algorithms to raw oximetry data for automated sleep staging and obstructive sleep apnea (OSA) diagnosis. SleepAI algorithms were trained on over 10,000 PSG recordings. The system consists of a wearable oximeter connected via Bluetooth to a mobile app transmitting raw data to a cloud-based platform for AI-driven analysis. Clinical validation was conducted in 53 subjects with suspected OSA, who used SleepAI for three nights at home and one night in a sleep centre alongside PSG. SleepAI's apnea-hypopnea index (AHI) estimates and three-class sleep staging (Wake, REM, NREM) were compared to PSG references. For OSA severity classification (non-OSA, mild, moderate, severe), SleepAI achieved an overall accuracy of 89%, with F1-scores of 1.0, 1.0, 0.9, and 0.88, respectively. The three-stage sleep classification achieved a Cohen's kappa of 0.75. Night-to-night AHI variability showed that 37.5% of participants experienced a one-level severity change across nights at home. No significant differences in sleep metrics were found between the first and subsequent nights at home, indicating no sleep disturbance by SleepAI. These findings support the SleepAI system as a promising and scalable alternative to existing Type IV HSATs, with the potential to address key clinical gaps by improving diagnostic accuracy and accessibility.</p>","PeriodicalId":17057,"journal":{"name":"Journal of Sleep Research","volume":" ","pages":"e70093"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical Validation of Artificial Intelligence Algorithms for the Diagnosis of Adult Obstructive Sleep Apnea and Sleep Staging From Oximetry and Photoplethysmography-SleepAI.\",\"authors\":\"Shirel Attia, Arie Oksenberg, Jeremy Levy, Angeleene Ang, Revital Shani-Hershkovich, Alissa Adler, Shlomit Katsav, Sharon Haimov, Alexandra Alexandrovich, Riva Tauman, Joachim A Behar\",\"doi\":\"10.1111/jsr.70093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Home sleep apnea tests (HSATs) have emerged as alternatives to in-laboratory polysomnography (PSG), but Type IV HSATs often show limited diagnostic performance. This study clinically validates SleepAI, a novel remote digital health system that applies AI algorithms to raw oximetry data for automated sleep staging and obstructive sleep apnea (OSA) diagnosis. SleepAI algorithms were trained on over 10,000 PSG recordings. The system consists of a wearable oximeter connected via Bluetooth to a mobile app transmitting raw data to a cloud-based platform for AI-driven analysis. Clinical validation was conducted in 53 subjects with suspected OSA, who used SleepAI for three nights at home and one night in a sleep centre alongside PSG. SleepAI's apnea-hypopnea index (AHI) estimates and three-class sleep staging (Wake, REM, NREM) were compared to PSG references. For OSA severity classification (non-OSA, mild, moderate, severe), SleepAI achieved an overall accuracy of 89%, with F1-scores of 1.0, 1.0, 0.9, and 0.88, respectively. The three-stage sleep classification achieved a Cohen's kappa of 0.75. Night-to-night AHI variability showed that 37.5% of participants experienced a one-level severity change across nights at home. No significant differences in sleep metrics were found between the first and subsequent nights at home, indicating no sleep disturbance by SleepAI. These findings support the SleepAI system as a promising and scalable alternative to existing Type IV HSATs, with the potential to address key clinical gaps by improving diagnostic accuracy and accessibility.</p>\",\"PeriodicalId\":17057,\"journal\":{\"name\":\"Journal of Sleep Research\",\"volume\":\" \",\"pages\":\"e70093\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sleep Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jsr.70093\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sleep Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jsr.70093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Clinical Validation of Artificial Intelligence Algorithms for the Diagnosis of Adult Obstructive Sleep Apnea and Sleep Staging From Oximetry and Photoplethysmography-SleepAI.
Home sleep apnea tests (HSATs) have emerged as alternatives to in-laboratory polysomnography (PSG), but Type IV HSATs often show limited diagnostic performance. This study clinically validates SleepAI, a novel remote digital health system that applies AI algorithms to raw oximetry data for automated sleep staging and obstructive sleep apnea (OSA) diagnosis. SleepAI algorithms were trained on over 10,000 PSG recordings. The system consists of a wearable oximeter connected via Bluetooth to a mobile app transmitting raw data to a cloud-based platform for AI-driven analysis. Clinical validation was conducted in 53 subjects with suspected OSA, who used SleepAI for three nights at home and one night in a sleep centre alongside PSG. SleepAI's apnea-hypopnea index (AHI) estimates and three-class sleep staging (Wake, REM, NREM) were compared to PSG references. For OSA severity classification (non-OSA, mild, moderate, severe), SleepAI achieved an overall accuracy of 89%, with F1-scores of 1.0, 1.0, 0.9, and 0.88, respectively. The three-stage sleep classification achieved a Cohen's kappa of 0.75. Night-to-night AHI variability showed that 37.5% of participants experienced a one-level severity change across nights at home. No significant differences in sleep metrics were found between the first and subsequent nights at home, indicating no sleep disturbance by SleepAI. These findings support the SleepAI system as a promising and scalable alternative to existing Type IV HSATs, with the potential to address key clinical gaps by improving diagnostic accuracy and accessibility.
期刊介绍:
The Journal of Sleep Research is dedicated to basic and clinical sleep research. The Journal publishes original research papers and invited reviews in all areas of sleep research (including biological rhythms). The Journal aims to promote the exchange of ideas between basic and clinical sleep researchers coming from a wide range of backgrounds and disciplines. The Journal will achieve this by publishing papers which use multidisciplinary and novel approaches to answer important questions about sleep, as well as its disorders and the treatment thereof.