{"title":"人群药代动力学模型的场合间变异性:可识别性、影响、相互依赖性和衍生的研究设计建议。","authors":"Emily Behrens, Sebastian G Wicha","doi":"10.1007/s10928-025-09966-7","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling interoccasion variability (IOV) of pharmacokinetic parameters is challenging in sparse study designs. We conducted a simulation study with stochastic simulation and estimation (SSE) to evaluate the influence of IOV (25, 75%CV) from numerous perspectives (power, type I error, accuracy and precision of parameter estimates, consequences of neglecting an IOV, capability to detect the 'correct' IOV). To expand the scope from modeling-related aspects to clinical trial practice, we investigated the minimal sample size for IOV detection and calculated areas under the concentration-time curve (AUC) derived from models containing IOV and mis-specified models. The power to correctly detect an IOV increased from one to three occasions (OCC) and the type I error rate to falsely include an IOV was not elevated. Two sampling schemes were compared (with/without trough sample) and including a trough sample resulted in better performance throughout the different evaluations in this simulation study. Parameters were estimated more precisely when more OCCs were included and IOV was of high effect size. Neglecting an IOV that was truly present had a high impact on bias and imprecision of the parameter estimates, mostly on interindividual variabilities and residual error. To reach a power of ≥ 95% in all scenarios when sampling in three OCCs between 10 and 50 patients were required in the investigated setting. AUC calculations with mis-specified models revealed a distorted AUC distribution as IOV was not considered.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 2","pages":"23"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992005/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interoccasion variability in population pharmacokinetic models: identifiability, influence, interdependencies and derived study design recommendations.\",\"authors\":\"Emily Behrens, Sebastian G Wicha\",\"doi\":\"10.1007/s10928-025-09966-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling interoccasion variability (IOV) of pharmacokinetic parameters is challenging in sparse study designs. We conducted a simulation study with stochastic simulation and estimation (SSE) to evaluate the influence of IOV (25, 75%CV) from numerous perspectives (power, type I error, accuracy and precision of parameter estimates, consequences of neglecting an IOV, capability to detect the 'correct' IOV). To expand the scope from modeling-related aspects to clinical trial practice, we investigated the minimal sample size for IOV detection and calculated areas under the concentration-time curve (AUC) derived from models containing IOV and mis-specified models. The power to correctly detect an IOV increased from one to three occasions (OCC) and the type I error rate to falsely include an IOV was not elevated. Two sampling schemes were compared (with/without trough sample) and including a trough sample resulted in better performance throughout the different evaluations in this simulation study. Parameters were estimated more precisely when more OCCs were included and IOV was of high effect size. Neglecting an IOV that was truly present had a high impact on bias and imprecision of the parameter estimates, mostly on interindividual variabilities and residual error. To reach a power of ≥ 95% in all scenarios when sampling in three OCCs between 10 and 50 patients were required in the investigated setting. AUC calculations with mis-specified models revealed a distorted AUC distribution as IOV was not considered.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 2\",\"pages\":\"23\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09966-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09966-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Interoccasion variability in population pharmacokinetic models: identifiability, influence, interdependencies and derived study design recommendations.
Modeling interoccasion variability (IOV) of pharmacokinetic parameters is challenging in sparse study designs. We conducted a simulation study with stochastic simulation and estimation (SSE) to evaluate the influence of IOV (25, 75%CV) from numerous perspectives (power, type I error, accuracy and precision of parameter estimates, consequences of neglecting an IOV, capability to detect the 'correct' IOV). To expand the scope from modeling-related aspects to clinical trial practice, we investigated the minimal sample size for IOV detection and calculated areas under the concentration-time curve (AUC) derived from models containing IOV and mis-specified models. The power to correctly detect an IOV increased from one to three occasions (OCC) and the type I error rate to falsely include an IOV was not elevated. Two sampling schemes were compared (with/without trough sample) and including a trough sample resulted in better performance throughout the different evaluations in this simulation study. Parameters were estimated more precisely when more OCCs were included and IOV was of high effect size. Neglecting an IOV that was truly present had a high impact on bias and imprecision of the parameter estimates, mostly on interindividual variabilities and residual error. To reach a power of ≥ 95% in all scenarios when sampling in three OCCs between 10 and 50 patients were required in the investigated setting. AUC calculations with mis-specified models revealed a distorted AUC distribution as IOV was not considered.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.